C9orf72 expansions are the most common genetic cause of Huntington disease phenocopies
Citation Manager Formats
Make Comment
See Comments
This article has a correction. Please see:
This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.
Abstract
Objective: In many cases where Huntington disease (HD) is suspected, the genetic test for HD is negative: these are known as HD phenocopies. A repeat expansion in the C9orf72 gene has recently been identified as a major cause of familial and sporadic frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Our objective was to determine whether this mutation causes HD phenocopies.
Methods: A cohort of 514 HD phenocopy patients were analyzed for the C9orf72 expansion using repeat primed PCR. In cases where the expansion was found, Southern hybridization was performed to determine expansion size. Clinical case notes were reviewed to determine the phenotype of expansion-positive cases.
Results: Ten subjects (1.95%) had the expansion, making it the most common identified genetic cause of HD phenocopy presentations. The size of expansion was not significantly different from that associated with other clinical presentations of C9orf72 expanded cases. The C9orf72 expansion-positive subjects were characterized by the presence of movement disorders, including dystonia, chorea, myoclonus, tremor, and rigidity. Furthermore, the age at onset in this cohort was lower than previously reported for subjects with the C9orf72 expansion and included one case with pediatric onset.
Discussion: This study extends the known phenotype of the C9orf72 expansion in both age at onset and movement disorder symptoms. We propose a revised clinico-genetic algorithm for the investigation of HD phenocopy patients based on these data.
GLOSSARY
- ALS=
- amyotrophic lateral sclerosis;
- CI=
- confidence interval;
- FTLD=
- frontotemporal lobar degeneration;
- HD=
- Huntington disease;
- MMSE=
- Mini-Mental State Examination;
- NHNN=
- National Hospital for Neurology and Neurosurgery
Footnotes
↵* These authors contributed equally to this work.
Go to Neurology.org for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.
Editorial, page 286
Supplemental data at www.neurology.org
- Received June 3, 2013.
- Accepted in final form September 12, 2013.
- © 2014 American Academy of Neurology
AAN Members
We have changed the login procedure to improve access between AAN.com and the Neurology journals. If you are experiencing issues, please log out of AAN.com and clear history and cookies. (For instructions by browser, please click the instruction pages below). After clearing, choose preferred Journal and select login for AAN Members. You will be redirected to a login page where you can log in with your AAN ID number and password. When you are returned to the Journal, your name should appear at the top right of the page.
AAN Non-Member Subscribers
Purchase access
For assistance, please contact:
AAN Members (800) 879-1960 or (612) 928-6000 (International)
Non-AAN Member subscribers (800) 638-3030 or (301) 223-2300 option 3, select 1 (international)
Sign Up
Information on how to subscribe to Neurology and Neurology: Clinical Practice can be found here
Purchase
Individual access to articles is available through the Add to Cart option on the article page. Access for 1 day (from the computer you are currently using) is US$ 39.00. Pay-per-view content is for the use of the payee only, and content may not be further distributed by print or electronic means. The payee may view, download, and/or print the article for his/her personal, scholarly, research, and educational use. Distributing copies (electronic or otherwise) of the article is not allowed.
Letters: Rapid online correspondence
- C9orf72 repeat expansion - a possible genetic link between Huntington's disease and amyotrophic lateral sclerosis?
- Suresh K Chhetri, Neurologist, Preston MND care and research centre, Lancashire Teaching Hospitals NHS Foundation Trustchhetri@doctors.org.uk
- Suresh Kumar Chhetri, Preston, United Kingdom.
Submitted June 12, 2014
REQUIREMENTS
You must ensure that your Disclosures have been updated within the previous six months. Please go to our Submission Site to add or update your Disclosure information.
Your co-authors must send a completed Publishing Agreement Form to Neurology Staff (not necessary for the lead/corresponding author as the form below will suffice) before you upload your comment.
If you are responding to a comment that was written about an article you originally authored:
You (and co-authors) do not need to fill out forms or check disclosures as author forms are still valid
and apply to letter.
Submission specifications:
- Submissions must be < 200 words with < 5 references. Reference 1 must be the article on which you are commenting.
- Submissions should not have more than 5 authors. (Exception: original author replies can include all original authors of the article)
- Submit only on articles published within 6 months of issue date.
- Do not be redundant. Read any comments already posted on the article prior to submission.
- Submitted comments are subject to editing and editor review prior to posting.
You May Also be Interested in
Dr. Deborah Friedman and Dr. Stacy Smith
► Watch
Related Articles
Topics Discussed
Alert Me
Recommended articles
-
Articles
Hexanucleotide repeat expansions in C9ORF72 in the spectrum of motor neuron diseasesWouter van Rheenen, Marka van Blitterswijk, Mark H.B. Huisman et al.Neurology, July 25, 2012 -
Views & Reviews
C9orf72 and the Care of the Patient With ALS or FTDProgress and Recommendations After 10 YearsJennifer Roggenbuck et al.Neurology: Genetics, December 21, 2020 -
Article
Screening for novel hexanucleotide repeat expansions at ALS- and FTD-associated lociFang He, Julie M. Jones, Claudia Figueroa-Romero et al.Neurology Genetics, May 11, 2016 -
Article
Multiparametric MRI study of ALS stratified for the C9orf72 genotypePeter Bede, Arun L.W. Bokde, Susan Byrne et al.Neurology, June 14, 2013