Advantages of virtual reality in the rehabilitation of balance and gait
Systematic review
Citation Manager Formats
Make Comment
See Comments
This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.
Abstract
Background Virtual reality (VR) has emerged as a therapeutic tool facilitating motor learning for balance and gait rehabilitation. The evidence, however, has not yet resulted in standardized guidelines. The aim of this study was to systematically review the application of VR-based rehabilitation of balance and gait in 6 neurologic cohorts, describing methodologic quality, intervention programs, and reported efficacy.
Methods This study follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. VR-based treatments of Parkinson disease, multiple sclerosis, acute and chronic poststroke, traumatic brain injury, and cerebral palsy were researched in PubMed and Scopus, including earliest available records. Therapeutic validity (CONTENT scale) and risk of bias in randomized controlled trials (RCT) (Cochrane Collaboration tool) and non-RCT (Newcastle-Ottawa scale) were assessed.
Results Ninety-seven articles were included, 68 published in 2013 or later. VR improved balance and gait in all cohorts, especially when combined with conventional rehabilitation. Most studies presented poor methodologic quality, lacked a clear rationale for intervention programs, and did not utilize motor learning principles meticulously. RCTs with more robust methodologic designs were widely recommended.
Conclusion Our results suggest that VR-based rehabilitation is developing rapidly, has the potential to improve balance and gait in neurologic patients, and brings additional benefits when combined with conventional rehabilitation. This systematic review provides detailed information for developing theory-driven protocols that may assist overcoming the observed lack of argued choices for intervention programs and motor learning implementation and serves as a reference for the design and planning of personalized VR-based treatments.
Registration PROSPERO CRD42016042051.
Glossary
- 10-MWT=
- 10 Meter Walk Test;
- BBS=
- Berg Balance Scale;
- CP=
- cerebral palsy;
- CR=
- conventional rehabilitation;
- GS=
- gait speed;
- MLS=
- motor learning strategies;
- MS=
- multiple sclerosis;
- NOS=
- Newcastle-Ottawa Scale;
- PD=
- Parkinson disease;
- PRISMA=
- Preferred Reported Items for Systematic Reviews and Meta-Analyses;
- RCT=
- randomized controlled trials;
- TBI=
- traumatic brain injury;
- TUG=
- Timed Up and Go;
- VR=
- virtual reality
Footnotes
Go to Neurology.org/N for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.
- Received September 7, 2017.
- Accepted in final form March 12, 2018.
- © 2018 American Academy of Neurology
AAN Members
We have changed the login procedure to improve access between AAN.com and the Neurology journals. If you are experiencing issues, please log out of AAN.com and clear history and cookies. (For instructions by browser, please click the instruction pages below). After clearing, choose preferred Journal and select login for AAN Members. You will be redirected to a login page where you can log in with your AAN ID number and password. When you are returned to the Journal, your name should appear at the top right of the page.
AAN Non-Member Subscribers
Purchase access
For assistance, please contact:
AAN Members (800) 879-1960 or (612) 928-6000 (International)
Non-AAN Member subscribers (800) 638-3030 or (301) 223-2300 option 3, select 1 (international)
Sign Up
Information on how to subscribe to Neurology and Neurology: Clinical Practice can be found here
Purchase
Individual access to articles is available through the Add to Cart option on the article page. Access for 1 day (from the computer you are currently using) is US$ 39.00. Pay-per-view content is for the use of the payee only, and content may not be further distributed by print or electronic means. The payee may view, download, and/or print the article for his/her personal, scholarly, research, and educational use. Distributing copies (electronic or otherwise) of the article is not allowed.
Letters: Rapid online correspondence
REQUIREMENTS
You must ensure that your Disclosures have been updated within the previous six months. Please go to our Submission Site to add or update your Disclosure information.
Your co-authors must send a completed Publishing Agreement Form to Neurology Staff (not necessary for the lead/corresponding author as the form below will suffice) before you upload your comment.
If you are responding to a comment that was written about an article you originally authored:
You (and co-authors) do not need to fill out forms or check disclosures as author forms are still valid
and apply to letter.
Submission specifications:
- Submissions must be < 200 words with < 5 references. Reference 1 must be the article on which you are commenting.
- Submissions should not have more than 5 authors. (Exception: original author replies can include all original authors of the article)
- Submit only on articles published within 6 months of issue date.
- Do not be redundant. Read any comments already posted on the article prior to submission.
- Submitted comments are subject to editing and editor review prior to posting.
You May Also be Interested in
Costs and Utilization of New-to-Market Neurologic Medications
Dr. Robert J. Fox and Dr. Mandy Leonard
► Watch
Related Articles
- No related articles found.
Topics Discussed
Alert Me
Recommended articles
-
Article
Transcranial direct current stimulation for children with perinatal stroke and hemiparesisAdam Kirton, Patrick Ciechanski, Ephrem Zewdie et al.Neurology, December 07, 2016 -
Review
Exercise for cognitive brain health in agingA systematic review for an evaluation of doseJoyce Gomes-Osman, Danylo F. Cabral, Timothy P. Morris et al.Neurology: Clinical Practice, May 30, 2018 -
Five New Things
NeurorehabilitationFive new thingsA.M. Barrett, Mooyeon Oh-Park, Peii Chen et al.Neurology: Clinical Practice, November 13, 2013 -
Articles
Virtual reality cues for improvement of gait in patients with multiple sclerosisYoram Baram, Ariel Miller et al.Neurology, January 24, 2006