Use of amyloid-PET to determine cutpoints for CSF markers
A multicenter study
Citation Manager Formats
Make Comment
See Comments
This article has a correction. Please see:
This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.
Abstract
Objectives: To define CSF β-amyloid 1–42 (Aβ42) cutpoints to detect cortical amyloid deposition as assessed by 11C-Pittsburgh compound B ([11C]PiB)-PET and to compare these calculated cutpoints with cutpoints currently used in clinical practice.
Methods: We included 433 participants (57 controls, 99 with mild cognitive impairment, 195 with Alzheimer disease [AD] dementia, and 82 with non-AD dementia) from 5 European centers. We calculated for each center and for the pooled cohort CSF Aβ42 and Aβ42/tau ratio cutpoints for cortical amyloid deposition based on visual interpretation of [11C]PiB-PET images.
Results: Amyloid-PET–based calculated CSF Aβ42 cutpoints ranged from 521 to 616 pg/mL, whereas existing clinical-based cutpoints ranged from 400 to 550 pg/mL. Using the calculated cutpoint from the pooled sample (557 pg/mL), concordance between CSF Aβ42 and amyloid-PET was 84%. Similar concordance was found when using a dichotomized Aβ42/tau ratio. Exploratory analysis showed that participants with a positive amyloid-PET and normal CSF Aβ42 levels had higher CSF tau and phosphorylated tau levels and more often had mild cognitive impairment or AD dementia compared with participants who had negative amyloid-PET and abnormal CSF Aβ42 levels.
Conclusions: Amyloid-PET–based CSF Aβ42 cutpoints were higher and tended to reduce intercenter variability compared with clinical-based cutpoints. Discordant participants with normal CSF Aβ42 and a positive amyloid-PET may be more likely to have AD-related amyloid pathology than participants with abnormal CSF Aβ42 and a negative amyloid-PET.
Classification of evidence: This study provides Class II evidence that an amyloid-PET–based CSF Aβ42 cutpoint identifies individuals with amyloid deposition with a sensitivity of 87% and specificity of 80%.
GLOSSARY
- AD=
- Alzheimer disease;
- Aβ=
- β-amyloid;
- Aβ42=
- β-amyloid 1–42;
- AUC=
- area under the curve;
- MCI=
- mild cognitive impairment;
- NPV=
- negative predictive value;
- OR=
- odds ratio;
- PiB=
- Pittsburgh compound B;
- PPV=
- positive predictive value;
- p-tau=
- phosphorylated tau;
- SUVr=
- standardized uptake value ratio
Footnotes
Go to Neurology.org for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.
Supplemental data at Neurology.org
- Received February 13, 2015.
- Accepted in final form August 28, 2015.
- © 2015 American Academy of Neurology
AAN Members
We have changed the login procedure to improve access between AAN.com and the Neurology journals. If you are experiencing issues, please log out of AAN.com and clear history and cookies. (For instructions by browser, please click the instruction pages below). After clearing, choose preferred Journal and select login for AAN Members. You will be redirected to a login page where you can log in with your AAN ID number and password. When you are returned to the Journal, your name should appear at the top right of the page.
AAN Non-Member Subscribers
Purchase access
For assistance, please contact:
AAN Members (800) 879-1960 or (612) 928-6000 (International)
Non-AAN Member subscribers (800) 638-3030 or (301) 223-2300 option 3, select 1 (international)
Sign Up
Information on how to subscribe to Neurology and Neurology: Clinical Practice can be found here
Purchase
Individual access to articles is available through the Add to Cart option on the article page. Access for 1 day (from the computer you are currently using) is US$ 39.00. Pay-per-view content is for the use of the payee only, and content may not be further distributed by print or electronic means. The payee may view, download, and/or print the article for his/her personal, scholarly, research, and educational use. Distributing copies (electronic or otherwise) of the article is not allowed.
Letters: Rapid online correspondence
REQUIREMENTS
You must ensure that your Disclosures have been updated within the previous six months. Please go to our Submission Site to add or update your Disclosure information.
Your co-authors must send a completed Publishing Agreement Form to Neurology Staff (not necessary for the lead/corresponding author as the form below will suffice) before you upload your comment.
If you are responding to a comment that was written about an article you originally authored:
You (and co-authors) do not need to fill out forms or check disclosures as author forms are still valid
and apply to letter.
Submission specifications:
- Submissions must be < 200 words with < 5 references. Reference 1 must be the article on which you are commenting.
- Submissions should not have more than 5 authors. (Exception: original author replies can include all original authors of the article)
- Submit only on articles published within 6 months of issue date.
- Do not be redundant. Read any comments already posted on the article prior to submission.
- Submitted comments are subject to editing and editor review prior to posting.
You May Also be Interested in
Dr. Dennis Bourdette and Dr. Lindsey Wooliscroft
► Watch
Topics Discussed
Alert Me
Recommended articles
-
Articles
CSF biomarkers for Alzheimer disease correlate with cortical brain biopsy findingsT.T. Seppälä, O. Nerg, A.M. Koivisto et al.Neurology, April 18, 2012 -
Article
CSF biomarkers in Olmsted CountyEvidence of 2 subclasses and associations with demographicsArgonde C. Van Harten, Heather J. Wiste, Stephen D. Weigand et al.Neurology, June 26, 2020 -
Articles
CSF biomarkers in frontotemporal lobar degeneration with known pathologyH. Bian, J. C. Van Swieten, S. Leight et al.Neurology, May 05, 2008 -
Article
High-precision plasma β-amyloid 42/40 predicts current and future brain amyloidosisSuzanne E. Schindler, James G. Bollinger, Vitaliy Ovod et al.Neurology, August 01, 2019