Does monoamine oxidase type B play a role in dopaminergic nerve cell death in Parkinson's disease?
Citation Manager Formats
Make Comment
See Comments
This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.
Abstract
Evidence supports the role of hyperoxidation phenomena in the mechanism of nerve cell death in Parkinson's disease (PD). The oxidative degradation of dopamine, catalyzed by monoamine oxidase type B (MAO-B), produces free radicals and thus could be implicated in the degenerative process. For this reason, we investigated by immunohistochemistry the distribution of MAO-B-containing cells in the midbrain of five patients with PD and five matched control subjects. MAO-B-like immunoreactivity was detected in glial cells, fibers, and neurons. Although most of the MAO-B-positive neurons probably belonged to the raphe dorsalis, we demonstrated by double-labeling immunohisto-chemistry that some of them were also dopaminergic. MAO-B-positive dopaminergic neurons were present in all dopa-minergic groups of the control midbrain. Within the substantia nigra pars compacta, most dopaminergic neurons were located in the dorsal part of the structure. MAO-B-positive dopaminergic neurons were still detected in PD midbrains. Compared with control subjects, the loss of dopaminergic neurons containing MAO-B (−45%) was no higher than that of MAO-B-negative dopaminergic neurons (−59%). The density of MAO-B-positive glial cells varied in the control midbrains: high in the least affected dopaminergic group (the central gray substance) and low in the most affected region (the substantia nigra pars compacta). The density of MAO-B-positive glial cells within dopaminergic cell subgroups in control midbrains were negatively correlated (r = −0.94; p <0.02) to the estimated neuronal loss in PD. We conclude that the presence of MAO-B in dopamine-containing neurons does not contribute to vulnerability in PD. Moreover, its presence in some glial cells might have a protective effect against oxidative stress induced by dopamine metabolism.
- Copyright 1996 by the American Academy of Neurology
AAN Members
We have changed the login procedure to improve access between AAN.com and the Neurology journals. If you are experiencing issues, please log out of AAN.com and clear history and cookies. (For instructions by browser, please click the instruction pages below). After clearing, choose preferred Journal and select login for AAN Members. You will be redirected to a login page where you can log in with your AAN ID number and password. When you are returned to the Journal, your name should appear at the top right of the page.
AAN Non-Member Subscribers
Purchase access
For assistance, please contact:
AAN Members (800) 879-1960 or (612) 928-6000 (International)
Non-AAN Member subscribers (800) 638-3030 or (301) 223-2300 option 3, select 1 (international)
Sign Up
Information on how to subscribe to Neurology and Neurology: Clinical Practice can be found here
Purchase
Individual access to articles is available through the Add to Cart option on the article page. Access for 1 day (from the computer you are currently using) is US$ 39.00. Pay-per-view content is for the use of the payee only, and content may not be further distributed by print or electronic means. The payee may view, download, and/or print the article for his/her personal, scholarly, research, and educational use. Distributing copies (electronic or otherwise) of the article is not allowed.
Letters: Rapid online correspondence
REQUIREMENTS
You must ensure that your Disclosures have been updated within the previous six months. Please go to our Submission Site to add or update your Disclosure information.
Your co-authors must send a completed Publishing Agreement Form to Neurology Staff (not necessary for the lead/corresponding author as the form below will suffice) before you upload your comment.
If you are responding to a comment that was written about an article you originally authored:
You (and co-authors) do not need to fill out forms or check disclosures as author forms are still valid
and apply to letter.
Submission specifications:
- Submissions must be < 200 words with < 5 references. Reference 1 must be the article on which you are commenting.
- Submissions should not have more than 5 authors. (Exception: original author replies can include all original authors of the article)
- Submit only on articles published within 6 months of issue date.
- Do not be redundant. Read any comments already posted on the article prior to submission.
- Submitted comments are subject to editing and editor review prior to posting.
You May Also be Interested in
Association of Neurofilament Light With the Development and Severity of Parkinson Disease
Dr. Rodolfo Savica and Dr. Parichita Choudhury
► Watch
Related Articles
- No related articles found.
Alert Me
Recommended articles
-
Clinical Implications of Neuroscience Research
Heterogeneity of the midbrain dopamine systemImplications for Parkinson diseaseAnhar Hassan, Eduardo E. Benarroch et al.Neurology, October 16, 2015 -
Articles
Gene transfer of trophic factors and stem cell grafting as treatments for Parkinson’s diseaseBiplob Dass, C. Warren Olanow, Jeffrey H. Kordower et al.Neurology, May 22, 2006 -
Articles
Dopamine cell loss in the periaqueductal gray in multiple system atrophy and Lewy body dementiaE. E. Benarroch, A. M. Schmeichel, B. N. Dugger et al.Neurology, July 13, 2009 -
Brief Communications
FADD: A link between TNF family receptors and caspases in Parkinson’s diseaseA. Hartmann, A. Mouatt–Prigent, B. A. Faucheux et al.Neurology, January 22, 2002