Clinical and Structural Findings in Patients With Lesion-Induced Dystonia
Descriptive and Quantitative Analysis of Published Cases
Citation Manager Formats
Make Comment
See Comments
This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.
Abstract
Background and Objectives Brain lesions are a well-recognized etiology of dystonia. These cases are especially valuable because they offer causal insight into the neuroanatomical substrates of dystonia. To date, knowledge of lesion-induced dystonia comes mainly from isolated case reports or small case series, restricting broader description and analysis.
Methods Cases of lesion-induced dystonia were first identified from a systematic review of published literature. Latent class analysis then investigated whether patients could be classified into subgroups based on lesion location and body regions affected by dystonia. Regression analyses subsequently investigated whether subgroup membership predicted clinical characteristics of dystonia.
Results Three hundred fifty-nine published cases were included. Lesions causing dystonia occurred in heterogeneous locations, most commonly in the basal ganglia (46.2%), followed by the thalamus (28.1%), brainstem (22.6%), and white matter (21.2%). The most common form of lesion-induced dystonia was focal dystonia (53.2%), with the hand (49.9%) and arm (44.3%) most commonly affected. Of all cases, 86.6% reported co-occurring neurologic manifestations and 26.1% reported other movement disorders. Latent class analysis identified 3 distinct subgroups of patients: those with predominantly limb dystonias, which were associated with basal ganglia lesions; those with hand dystonia, associated with thalamic lesions; and those with predominantly cervical dystonia, associated with brainstem and cerebellar lesions. Regression demonstrated significant differences between these subgroups on a range of dystonia symptoms, including dystonic tremor, symptom latency, other movement disorders, and dystonia variability.
Discussion Although dystonia can be induced by lesions to numerous brain regions, there are distinct relationships between lesion locations and dystonic body parts. This suggests that the affected brain networks are different between types of dystonia.
Glossary
- AIC=
- Akaike information criterion;
- BIC=
- Bayesian information criterion;
- LCA=
- latent class analysis;
- LMR=
- Lo-Mendell-Rubin
Footnotes
Go to Neurology.org/N for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.
Submitted and externally peer reviewed. The handling editor was Peter Hedera, MD, PhD.
Editorial, page 777
CME Course: NPub.org/cmelist
- Received November 17, 2021.
- Accepted in final form June 15, 2022.
- © 2022 American Academy of Neurology
AAN Members
We have changed the login procedure to improve access between AAN.com and the Neurology journals. If you are experiencing issues, please log out of AAN.com and clear history and cookies. (For instructions by browser, please click the instruction pages below). After clearing, choose preferred Journal and select login for AAN Members. You will be redirected to a login page where you can log in with your AAN ID number and password. When you are returned to the Journal, your name should appear at the top right of the page.
AAN Non-Member Subscribers
Purchase access
For assistance, please contact:
AAN Members (800) 879-1960 or (612) 928-6000 (International)
Non-AAN Member subscribers (800) 638-3030 or (301) 223-2300 option 3, select 1 (international)
Sign Up
Information on how to subscribe to Neurology and Neurology: Clinical Practice can be found here
Purchase
Individual access to articles is available through the Add to Cart option on the article page. Access for 1 day (from the computer you are currently using) is US$ 39.00. Pay-per-view content is for the use of the payee only, and content may not be further distributed by print or electronic means. The payee may view, download, and/or print the article for his/her personal, scholarly, research, and educational use. Distributing copies (electronic or otherwise) of the article is not allowed.
Letters: Rapid online correspondence
REQUIREMENTS
You must ensure that your Disclosures have been updated within the previous six months. Please go to our Submission Site to add or update your Disclosure information.
Your co-authors must send a completed Publishing Agreement Form to Neurology Staff (not necessary for the lead/corresponding author as the form below will suffice) before you upload your comment.
If you are responding to a comment that was written about an article you originally authored:
You (and co-authors) do not need to fill out forms or check disclosures as author forms are still valid
and apply to letter.
Submission specifications:
- Submissions must be < 200 words with < 5 references. Reference 1 must be the article on which you are commenting.
- Submissions should not have more than 5 authors. (Exception: original author replies can include all original authors of the article)
- Submit only on articles published within 6 months of issue date.
- Do not be redundant. Read any comments already posted on the article prior to submission.
- Submitted comments are subject to editing and editor review prior to posting.
You May Also be Interested in
More Online
Costs and Utilization of New-to-Market Neurologic Medications
Dr. Robert J. Fox and Dr. Mandy Leonard