MRI-Based Machine Learning Prediction Framework to Lateralize Hippocampal Sclerosis in Patients With Temporal Lobe Epilepsy
Citation Manager Formats
Make Comment
See Comments
This article has a correction. Please see:
This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.
Abstract
Background and Objectives MRI fails to reveal hippocampal pathology in 30% to 50% of temporal lobe epilepsy (TLE) surgical candidates. To address this clinical challenge, we developed an automated MRI-based classifier that lateralizes the side of covert hippocampal pathology in TLE.
Methods We trained a surface-based linear discriminant classifier that uses T1-weighted (morphology) and T2-weighted and fluid-attenuated inversion recovery (FLAIR)/T1 (intensity) features. The classifier was trained on 60 patients with TLE (mean age 35.6 years, 58% female) with histologically verified hippocampal sclerosis (HS). Images were deemed to be MRI negative in 42% of cases on the basis of neuroradiologic reading (40% based on hippocampal volumetry). The predictive model automatically labeled patients as having left or right TLE. Lateralization accuracy was compared to electroclinical data, including side of surgery. Accuracy of the classifier was further assessed in 2 independent TLE cohorts with similar demographics and electroclinical characteristics (n = 57, 58% MRI negative).
Results The overall lateralization accuracy was 93% (95% confidence interval 92%–94%), regardless of HS visibility. In MRI-negative TLE, the combination of T2 and FLAIR/T1 intensities provided the highest accuracy in both the training (84%, area under the curve [AUC] 0.95 ± 0.02) and validation (cohort 1 90%, AUC 0.99; cohort 2 76%, AUC 0.94) cohorts.
Discussion This prediction model for TLE lateralization operates on readily available conventional MRI contrasts and offers gain in accuracy over visual radiologic assessment. The combined contribution of decreased T1- and increased T2-weighted intensities makes the synthetic FLAIR/T1 contrast particularly effective in MRI-negative HS, setting the basis for broad clinical translation.
Classification of Evidence This study provides Class II evidence that in people with TLE and MRI-negative HS, an automated MRI-based classifier accurately determines the side of pathology.
Glossary
- AUC=
- area under the curve;
- FLAIR=
- fluid-attenuated inversion recovery;
- FOV=
- field of view;
- HS=
- hippocampal sclerosis;
- LDA=
- linear discriminant analysis;
- LTLE=
- left TLE;
- ROC=
- receiver operating characteristics;
- ROI=
- region of interest;
- RTLE=
- right TLE;
- SEEG=
- stereoencephalography;
- TE=
- echo time;
- 3D=
- 3-dimensional;
- TI=
- inversion time;
- TLE=
- temporal lobe epilepsy;
- TR=
- repetition time;
- 2D=
- 2-dimensional
Footnotes
Go to Neurology.org/N for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.
↵* These authors contributed equally to this work.
See the Highlighted Changes supplement, showing the changes made in this updated version: links.lww.com/WNL/B873.
Class of Evidence: NPub.org/coe
- Received December 1, 2020.
- Accepted in final form July 30, 2021.
- © 2021 American Academy of Neurology
AAN Members
We have changed the login procedure to improve access between AAN.com and the Neurology journals. If you are experiencing issues, please log out of AAN.com and clear history and cookies. (For instructions by browser, please click the instruction pages below). After clearing, choose preferred Journal and select login for AAN Members. You will be redirected to a login page where you can log in with your AAN ID number and password. When you are returned to the Journal, your name should appear at the top right of the page.
AAN Non-Member Subscribers
Purchase access
For assistance, please contact:
AAN Members (800) 879-1960 or (612) 928-6000 (International)
Non-AAN Member subscribers (800) 638-3030 or (301) 223-2300 option 3, select 1 (international)
Sign Up
Information on how to subscribe to Neurology and Neurology: Clinical Practice can be found here
Purchase
Individual access to articles is available through the Add to Cart option on the article page. Access for 1 day (from the computer you are currently using) is US$ 39.00. Pay-per-view content is for the use of the payee only, and content may not be further distributed by print or electronic means. The payee may view, download, and/or print the article for his/her personal, scholarly, research, and educational use. Distributing copies (electronic or otherwise) of the article is not allowed.
Letters: Rapid online correspondence
REQUIREMENTS
You must ensure that your Disclosures have been updated within the previous six months. Please go to our Submission Site to add or update your Disclosure information.
Your co-authors must send a completed Publishing Agreement Form to Neurology Staff (not necessary for the lead/corresponding author as the form below will suffice) before you upload your comment.
If you are responding to a comment that was written about an article you originally authored:
You (and co-authors) do not need to fill out forms or check disclosures as author forms are still valid
and apply to letter.
Submission specifications:
- Submissions must be < 200 words with < 5 references. Reference 1 must be the article on which you are commenting.
- Submissions should not have more than 5 authors. (Exception: original author replies can include all original authors of the article)
- Submit only on articles published within 6 months of issue date.
- Do not be redundant. Read any comments already posted on the article prior to submission.
- Submitted comments are subject to editing and editor review prior to posting.
You May Also be Interested in
Dr. Babak Hooshmand and Dr. David Smith