Longitudinal Changes in the Retinal Microstructures of Eyes With Chiasmal Compression
Citation Manager Formats
Make Comment
See Comments
This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.
Abstract
Objective To test the hypothesis that there was a temporal change in the retinal microstructure after decompression surgery for chiasmal compression, the 1-year longitudinal changes in the inner and outer retinal thickness after decompression surgery were analyzed using spectral-domain optical coherence tomography (SD-OCT) with linear mixed-effects models.
Methods SD-OCT was obtained from 87 eyes with chiasmal compression and compared to 100 healthy controls. The preoperative and 1-year postoperative longitudinal changes in the retinal layer thickness were measured. The thickness of each of the following retinal layers was analyzed: the macular retinal nerve fiber layer (RNFL), the ganglion cell layer (GCL), the inner plexiform layer (IPL), the inner nuclear layer, the outer plexiform layer, the outer nuclear layer, and the photoreceptor layer.
Results The RNFL, GCL, and IPL showed thinning at a rate of 1.068 μm/y (95% confidence interval [CI], 0.523, 1.613), 1.189 μm/y (95% CI 0.452, 1.925), and 1.177 μm/y (95% CI 0.645, 1.709), respectively, after decompression surgery. The preoperative thickness of the intraretinal layer was associated with postoperative visual field recovery (RNFL, odds ratio [OR] 1.221, 95% CI 1.058, 1.410; GCL, OR 1.133, 95% CI 1.024, 1.254; and IPL, OR 1.174, 95% CI 1.002, 1.376).
Conclusions The changes in retinal microstructure persisted and progressed in eyes with chiasmal compression after decompression surgery. The findings provide insight into the biological and anatomical sequelae following chiasmal compression. The preoperative thickness of the inner retinal layers was associated with postoperative visual field recovery.
Glossary
- AUC=
- area under the curve;
- AUROC=
- area under the receiver operating characteristic curve;
- BCVA=
- best corrected visual acuity;
- CI=
- confidence interval;
- GCC=
- ganglion cell layer complex;
- GCL=
- ganglion cell layer;
- INL=
- inner nuclear layer;
- IPL=
- inner plexiform layer;
- MD=
- mean deviation;
- OCT=
- optical coherence tomography;
- ONL=
- outer nuclear layer;
- OPL=
- outer plexiform layer;
- OR=
- odds ratio;
- PRL=
- photoreceptor layer;
- pRNFL=
- peripapillary retinal nerve fiber layer;
- RGC=
- retinal ganglion cell;
- RNFL=
- retinal nerve fiber layer;
- SD-OCT=
- spectral-domain optical coherence tomography;
- SE=
- standard error;
- SER=
- spherical equivalent refractive error;
- VF=
- visual field
Footnotes
Go to Neurology.org/N for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.
↵* These authors contributed equally to this work.
- Received February 25, 2020.
- Accepted in final form August 20, 2020.
- © 2020 American Academy of Neurology
AAN Members
We have changed the login procedure to improve access between AAN.com and the Neurology journals. If you are experiencing issues, please log out of AAN.com and clear history and cookies. (For instructions by browser, please click the instruction pages below). After clearing, choose preferred Journal and select login for AAN Members. You will be redirected to a login page where you can log in with your AAN ID number and password. When you are returned to the Journal, your name should appear at the top right of the page.
AAN Non-Member Subscribers
Purchase access
For assistance, please contact:
AAN Members (800) 879-1960 or (612) 928-6000 (International)
Non-AAN Member subscribers (800) 638-3030 or (301) 223-2300 option 3, select 1 (international)
Sign Up
Information on how to subscribe to Neurology and Neurology: Clinical Practice can be found here
Purchase
Individual access to articles is available through the Add to Cart option on the article page. Access for 1 day (from the computer you are currently using) is US$ 39.00. Pay-per-view content is for the use of the payee only, and content may not be further distributed by print or electronic means. The payee may view, download, and/or print the article for his/her personal, scholarly, research, and educational use. Distributing copies (electronic or otherwise) of the article is not allowed.
Letters: Rapid online correspondence
REQUIREMENTS
You must ensure that your Disclosures have been updated within the previous six months. Please go to our Submission Site to add or update your Disclosure information.
Your co-authors must send a completed Publishing Agreement Form to Neurology Staff (not necessary for the lead/corresponding author as the form below will suffice) before you upload your comment.
If you are responding to a comment that was written about an article you originally authored:
You (and co-authors) do not need to fill out forms or check disclosures as author forms are still valid
and apply to letter.
Submission specifications:
- Submissions must be < 200 words with < 5 references. Reference 1 must be the article on which you are commenting.
- Submissions should not have more than 5 authors. (Exception: original author replies can include all original authors of the article)
- Submit only on articles published within 6 months of issue date.
- Do not be redundant. Read any comments already posted on the article prior to submission.
- Submitted comments are subject to editing and editor review prior to posting.
You May Also be Interested in
Dr. Sharon Poisson and Dr. Tiffany Brown
► Watch
Related Articles
- No related articles found.
Topics Discussed
Alert Me
Recommended articles
-
Drugs and Devices
The application of optical coherence tomography in neurologic diseasesRamiro S. Maldonado, Pradeep Mettu, Mays El-Dairi et al.Neurology: Clinical Practice, September 17, 2015 -
Article
Optical coherence tomography is highly sensitive in detecting prior optic neuritisSarah Chaoying Xu, Randy H. Kardon, Jacqueline A. Leavitt et al.Neurology, January 23, 2019 -
Article
Retinal and optic nerve changes in microcephalyAn optical coherence tomography studyEleni Papageorgiou, Anastasia Pilat, Frank Proudlock et al.Neurology, July 11, 2018 -
Article
Functional–structural correlations in the afferent visual pathway in pediatric demyelinationE. Ann Yeh, Ruth Ann Marrie, Y. Arun Reginald et al.Neurology, October 31, 2014