Regional, not global, functional connectivity contributes to isolated focal dystonia
Citation Manager Formats
Make Comment
See Comments
This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.
Abstract
Objective To test the hypothesis that there is shared regional or global functional connectivity dysfunction in a large cohort of patients with isolated focal dystonia affecting different body regions compared to control participants. In this case-control study, we obtained resting-state MRI scans (three or four 7.3-minute runs) with eyes closed in participants with focal dystonia (cranial [17], cervical [13], laryngeal [18], or limb [10]) and age- and sex-matched controls.
Methods Rigorous preprocessing for all analyses was performed to minimize effect of head motion during scan acquisition (dystonia n = 58, control n = 47 analyzed). We assessed regional functional connectivity by computing a seed-correlation map between putamen, pallidum, and sensorimotor cortex and all brain voxels. We assessed significant group differences on a cluster-wise basis. In a separate analysis, we applied 300 seed regions across the cortex, cerebellum, basal ganglia, and thalamus to comprehensively sample the whole brain. We obtained participant whole-brain correlation matrices by computing the correlation between seed average time courses for each seed pair. Weighted object-oriented data analysis assessed group-level whole-brain differences.
Results Participants with focal dystonia had decreased functional connectivity at the regional level, within the striatum and between lateral primary sensorimotor cortex and ventral intraparietal area, whereas whole-brain correlation matrices did not differ between focal dystonia and control groups. Rigorous quality control measures eliminated spurious large-scale functional connectivity differences between groups.
Conclusion Regional functional connectivity differences, not global network level dysfunction, contributes to common pathophysiologic mechanisms in isolated focal dystonia. Rigorous quality control eliminated spurious large-scale network differences between patients with focal dystonia and control participants.
Glossary
- BOLD=
- blood oxygenation level–dependent;
- CI=
- confidence interval;
- FC=
- functional connectivity;
- FD=
- focal dystonia;
- GPi=
- internal globus pallidus;
- GSR=
- global signal regression;
- IPS=
- intraparietal sulcus;
- MDS=
- multidimensional scaling;
- OODA=
- object-oriented data analysis;
- ROI=
- region of interest;
- rs-fcMRI=
- resting-state functional connectivity MRI;
- VIP=
- ventral intraparietal
Footnotes
Go to Neurology.org/N for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.
↵* These authors contributed equally to this work.
Editorial, page 711
- Received January 24, 2020.
- Accepted in final form May 13, 2020.
- © 2020 American Academy of Neurology
AAN Members
We have changed the login procedure to improve access between AAN.com and the Neurology journals. If you are experiencing issues, please log out of AAN.com and clear history and cookies. (For instructions by browser, please click the instruction pages below). After clearing, choose preferred Journal and select login for AAN Members. You will be redirected to a login page where you can log in with your AAN ID number and password. When you are returned to the Journal, your name should appear at the top right of the page.
AAN Non-Member Subscribers
Purchase access
For assistance, please contact:
AAN Members (800) 879-1960 or (612) 928-6000 (International)
Non-AAN Member subscribers (800) 638-3030 or (301) 223-2300 option 3, select 1 (international)
Sign Up
Information on how to subscribe to Neurology and Neurology: Clinical Practice can be found here
Purchase
Individual access to articles is available through the Add to Cart option on the article page. Access for 1 day (from the computer you are currently using) is US$ 39.00. Pay-per-view content is for the use of the payee only, and content may not be further distributed by print or electronic means. The payee may view, download, and/or print the article for his/her personal, scholarly, research, and educational use. Distributing copies (electronic or otherwise) of the article is not allowed.
Letters: Rapid online correspondence
REQUIREMENTS
You must ensure that your Disclosures have been updated within the previous six months. Please go to our Submission Site to add or update your Disclosure information.
Your co-authors must send a completed Publishing Agreement Form to Neurology Staff (not necessary for the lead/corresponding author as the form below will suffice) before you upload your comment.
If you are responding to a comment that was written about an article you originally authored:
You (and co-authors) do not need to fill out forms or check disclosures as author forms are still valid
and apply to letter.
Submission specifications:
- Submissions must be < 200 words with < 5 references. Reference 1 must be the article on which you are commenting.
- Submissions should not have more than 5 authors. (Exception: original author replies can include all original authors of the article)
- Submit only on articles published within 6 months of issue date.
- Do not be redundant. Read any comments already posted on the article prior to submission.
- Submitted comments are subject to editing and editor review prior to posting.
You May Also be Interested in
Dr. Dennis Bourdette and Dr. Lindsey Wooliscroft
► Watch
Topics Discussed
Alert Me
Recommended articles
-
Articles
“Silent event-related” fMRI reveals reduced sensorimotor activation in laryngeal dystoniaB. Haslinger, P. Erhard, C. Dresel et al.Neurology, November 21, 2005 -
Article
Top-down alteration of functional connectivity within the sensorimotor network in focal dystoniaGiovanni Battistella, Kristina Simonyan et al.Neurology, March 27, 2019 -
Editorial
Isolated focal dystoniaThe mysterious pathophysiology is being unraveledHélio A.G. Teive, Chiung Chu Chen et al.Neurology, September 10, 2020 -
Article
Cognitive correlates of cerebellar resting-state functional connectivity in Parkinson diseaseBaijayanta Maiti, Jonathan M. Koller, Abraham Z. Snyder et al.Neurology, December 17, 2019