Increased connectivity of hub networks and cognitive impairment in multiple sclerosis
Citation Manager Formats
Make Comment
See Comments
This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.
Abstract
Objective: To investigate default-mode network (DMN) and frontoparietal network (FPN) dysfunction in cognitively impaired (CI) patients with multiple sclerosis (MS) because these networks strongly relate to cognition and contain most of the hubs of the brain.
Methods: Resting-state fMRI and neuropsychological assessments were performed in 322 patients with MS and 96 healthy controls (HCs). Patients with MS were classified as CI (z score < −2.0 on at least 2 tests; n = 87), mildly cognitively impaired (z score < −1.5 on at least 2 tests and not CI; n = 65), and cognitively preserved (CP; n = 180). Within-network connectivity, connectivity with the rest of the brain, and between-network connectivity were calculated and compared between groups. Connectivity values were normalized for individual means and SDs.
Results: Only in CI, both the DMN and FPN showed increased connectivity with the rest of the brain compared to HCs and CP, with no change in within- or between-network connectivity. Regionally, this increased connectivity was driven by the inferior parietal, posterior cingulate, and angular gyri. Increased connectivity with the rest of the brain correlated with worse cognitive performance, namely attention for the FPN as well as information processing speed and working memory for both networks.
Conclusions: In CI patients with MS, the DMN and FPN showed increased connectivity with the rest of the brain, while normal within- and between-network connectivity levels were maintained. These findings indicate that cognitive impairment in MS features disturbed communication of hub-rich networks, but only with the more peripheral (i.e., nonhub) regions of the brain.
GLOSSARY
- CI=
- cognitively impaired;
- CP=
- cognitively preserved;
- DMN=
- default-mode network;
- EDSS=
- Expanded Disease Severity Scale;
- FPN=
- frontoparietal network;
- GM=
- gray matter;
- GMV=
- gray matter volume;
- HC=
- healthy control;
- MCI=
- mildly cognitively impaired;
- MS=
- multiple sclerosis;
- ROI=
- region of interest;
- RSN=
- resting-state network;
- TE=
- echo time;
- TR=
- repetition time;
- WM=
- white matter
Footnotes
Go to Neurology.org for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.
Supplemental data at Neurology.org
- Received July 28, 2016.
- Accepted in final form March 6, 2017.
- © 2017 American Academy of Neurology
AAN Members
We have changed the login procedure to improve access between AAN.com and the Neurology journals. If you are experiencing issues, please log out of AAN.com and clear history and cookies. (For instructions by browser, please click the instruction pages below). After clearing, choose preferred Journal and select login for AAN Members. You will be redirected to a login page where you can log in with your AAN ID number and password. When you are returned to the Journal, your name should appear at the top right of the page.
AAN Non-Member Subscribers
Purchase access
For assistance, please contact:
AAN Members (800) 879-1960 or (612) 928-6000 (International)
Non-AAN Member subscribers (800) 638-3030 or (301) 223-2300 option 3, select 1 (international)
Sign Up
Information on how to subscribe to Neurology and Neurology: Clinical Practice can be found here
Purchase
Individual access to articles is available through the Add to Cart option on the article page. Access for 1 day (from the computer you are currently using) is US$ 39.00. Pay-per-view content is for the use of the payee only, and content may not be further distributed by print or electronic means. The payee may view, download, and/or print the article for his/her personal, scholarly, research, and educational use. Distributing copies (electronic or otherwise) of the article is not allowed.
Letters: Rapid online correspondence
REQUIREMENTS
You must ensure that your Disclosures have been updated within the previous six months. Please go to our Submission Site to add or update your Disclosure information.
Your co-authors must send a completed Publishing Agreement Form to Neurology Staff (not necessary for the lead/corresponding author as the form below will suffice) before you upload your comment.
If you are responding to a comment that was written about an article you originally authored:
You (and co-authors) do not need to fill out forms or check disclosures as author forms are still valid
and apply to letter.
Submission specifications:
- Submissions must be < 200 words with < 5 references. Reference 1 must be the article on which you are commenting.
- Submissions should not have more than 5 authors. (Exception: original author replies can include all original authors of the article)
- Submit only on articles published within 6 months of issue date.
- Do not be redundant. Read any comments already posted on the article prior to submission.
- Submitted comments are subject to editing and editor review prior to posting.
You May Also be Interested in
Dr. Sharon Poisson and Dr. Tiffany Brown
► Watch
Topics Discussed
Alert Me
Recommended articles
-
Article
Amyloid and cerebrovascular burden divergently influence brain functional network changes over timeJoanna Su Xian Chong, Hyemin Jang, Hee Jin Kim et al.Neurology, September 11, 2019 -
Article
Posterior brain damage and cognitive impairment in pediatric multiple sclerosisMaria A. Rocca, Martina Absinta, Maria Pia Amato et al.Neurology, March 19, 2014 -
Research Article
Longitudinal Network Changes and Conversion to Cognitive Impairment in Multiple SclerosisMarijn Huiskamp, Anand J.C. Eijlers, Tommy A.A. Broeders et al.Neurology, June 07, 2021 -
Article
Default-mode network connectivity in cognitively unimpaired patients with Parkinson diseaseAlessandro Tessitore, Fabrizio Esposito, Carmine Vitale et al.Neurology, October 24, 2012