Muscle Na+ channelopathies
MRI detects intracellular 23Na accumulation during episodic weakness
Citation Manager Formats
Make Comment
See Comments
This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.
Abstract
Background: Muscle channelopathies such as paramyotonia, hyperkalemic periodic paralysis, and potassium-aggravated myotonia are caused by gain-of-function Na+ channel mutations.
Methods: Implementation of a three-dimensional radial 23Na magnetic resonance (MR) sequence with ultra-short echo times allowed the authors to quantify changes in the total muscular 23Na signal intensity. By this technique and T2-weighted 1H MRI, the authors studied whether the affected muscles take up Na+ and water during episodes of myotonic stiffness or of cold- or exercise-induced weakness.
Results: A 22% increase in the 23Na signal intensity and edema-like changes on T2-weighted 1H MR images were associated with cold-induced weakness in all 10 paramyotonia patients; signal increase and weakness disappeared within 1 day. A 10% increase in 23Na, but no increase in the T2-weighted 1H signal, occurred during cold- or exercise-induced weakness in seven hyperkalemic periodic paralysis patients, and no MR changes were observed in controls or exercise-induced stiffness in six potassium-aggravated myotonia patients. Measurements on native muscle fibers revealed provocation-induced, intracellular Na+ accumulation and membrane depolarization by −41 mV for paramyotonia, by −30 mV for hyperkalemic periodic paralysis, and by −20 mV for potassium-aggravated myotonia. The combined in vivo and in vitro approach showed a close correlation between the increase in 23Na MR signal intensity and the membrane depolarization (r = 0.92).
Conclusions: The increase in the total 23Na signal intensity reflects intracellular changes, the cold-induced Na+ shifts are greatest and osmotically relevant in paramyotonia patients, and even osmotically irrelevant Na+ shifts can be detected by the implemented 23Na MR technique.
AAN Members
We have changed the login procedure to improve access between AAN.com and the Neurology journals. If you are experiencing issues, please log out of AAN.com and clear history and cookies. (For instructions by browser, please click the instruction pages below). After clearing, choose preferred Journal and select login for AAN Members. You will be redirected to a login page where you can log in with your AAN ID number and password. When you are returned to the Journal, your name should appear at the top right of the page.
AAN Non-Member Subscribers
Purchase access
For assistance, please contact:
AAN Members (800) 879-1960 or (612) 928-6000 (International)
Non-AAN Member subscribers (800) 638-3030 or (301) 223-2300 option 3, select 1 (international)
Sign Up
Information on how to subscribe to Neurology and Neurology: Clinical Practice can be found here
Purchase
Individual access to articles is available through the Add to Cart option on the article page. Access for 1 day (from the computer you are currently using) is US$ 39.00. Pay-per-view content is for the use of the payee only, and content may not be further distributed by print or electronic means. The payee may view, download, and/or print the article for his/her personal, scholarly, research, and educational use. Distributing copies (electronic or otherwise) of the article is not allowed.
Letters: Rapid online correspondence
REQUIREMENTS
You must ensure that your Disclosures have been updated within the previous six months. Please go to our Submission Site to add or update your Disclosure information.
Your co-authors must send a completed Publishing Agreement Form to Neurology Staff (not necessary for the lead/corresponding author as the form below will suffice) before you upload your comment.
If you are responding to a comment that was written about an article you originally authored:
You (and co-authors) do not need to fill out forms or check disclosures as author forms are still valid
and apply to letter.
Submission specifications:
- Submissions must be < 200 words with < 5 references. Reference 1 must be the article on which you are commenting.
- Submissions should not have more than 5 authors. (Exception: original author replies can include all original authors of the article)
- Submit only on articles published within 6 months of issue date.
- Do not be redundant. Read any comments already posted on the article prior to submission.
- Submitted comments are subject to editing and editor review prior to posting.
You May Also be Interested in
Dr. Deborah Friedman and Dr. Stacy Smith
► Watch
Topics Discussed
Alert Me
Recommended articles
-
Articles
Defective slow inactivation of sodium channels contributes to familial periodic paralysisLawrence J. Hayward, Gisela M. Sandoval, Stephen C. Cannon et al.Neurology, April 01, 1999 -
Articles
Altered fast and slow inactivation of the N440K Nav1.4 mutant in a periodic paralysis syndromeChristoph Lossin, Tai-Seung Nam, Shahab Shahangian et al.Neurology, August 22, 2012 -
Articles
Cold-induced defects of sodium channel gating in atypical periodic paralysis plus myotoniaJadon Webb, Stephen C. Cannon et al.Neurology, September 26, 2007 -
Article
Predominantly myalgic phenotype caused by the c.3466G>A p.A1156T mutation in SCN4A geneJohanna Palmio, Satu Sandell, Michael G. Hanna et al.Neurology, March 22, 2017