TY - JOUR T1 -灰质MRI利用随机森林鉴别视神经脊髓炎和多发性硬化症JF - Neurology - JO - Neurology SP - 2463 LP - 2470 DO - 10.1212/WNL.0000000首页000003395Arman Eshaghi六世- 87 - 23盟盟-维克多Wottschel盟罗莎Cortese盟-诺阿花茎甘蓝AU -默罕默德·阿里Sahraian盟-艾伦·j·汤普森AU -丹尼尔·c·亚历山大盟奥尔加Ciccarelli Y1 - 2016/12/06 UR - //www.ez-admanager.com/content/87/23/2463.abstract N2 -目的:我们测试大脑灰质(GM)成像技术措施是否能区分多发性硬化症(MS)和首页视neuromyelitis(动)使用random-forest分类。方法:在伊朗德黑兰研究了90名参与者(25名MS患者,30名NMO患者和35名健康对照[hc]),在意大利帕多瓦研究了54名参与者(24名MS患者,20名NMO患者和10名hc)。参与者接受脑T1和T2/液体衰减反转恢复MRI检查。计算50个皮质GM区域的体积、厚度和表面积以及GM深部核的体积,并构建3个随机森林模型,将患者分为NMO或MS,并将每组患者与hc分开。临床诊断是计算准确性的金标准。结果:该分类器将萎缩更严重的MS患者(尤其是GM深部)与NMO患者区分开来,平均准确率为74%(敏感性/特异性:77/72;p & lt;0.01)。当我们使用丘脑体积(最具鉴别性的GM测量)和白质病变体积时,MS与NMO的分类准确率为80%。质谱对hc和NMO对hc的分类准确率较高(分别为92%和88%)。Conclusions: GM imaging biomarkers, automatically obtained from clinical scans, can be used to distinguish NMO from MS, even in a 2-center setting, and may facilitate the differential diagnosis in clinical practice.Classification of evidence: This study provides Class II evidence that GM imaging biomarkers can distinguish patients with NMO from those with MS.AQP4-Ab=aquaporin-4 autoantibody; EDSS=Expanded Disability Status Scale; FLAIR=fluid-attenuated inversion recovery; GM=gray matter; HC=healthy control; LPBA=LONI Probabilistic Brain Atlas; MS=multiple sclerosis; NMO=neuromyelitis optica; NMOSD=neuromyelitis optica spectrum disorder ER -