TY - JOUR T1 -脑电图解释过程中癫痫发作和节律性和周期性模式的专家级分类JF - Neurology JO - Neurology DO - 10.1212/WNL.0000000000207127首页Sp - 10.1212/ wnl.0000000000207127AU -金晶盟Wendong Ge盟申香港非盟-费尔南德斯Marta盒饭盟甄林盟-杨Chaoqi盟Sungtae AU -亚伦·袭击非盟-艾琳Herlopian盟Ioannis卡拉奇AU -乔纳森·j·哈尔福德盟马库斯·c·Ng AU -艾米丽·l·约翰逊盟布莱恩·l·Appavu AU -王妃a Sarkis盟Gamaleldin奥斯曼AU -彼得·w·卡普兰AU -莫妮卡b . Dhakar盟Lakshman Arcot Jayagopal AU - Zubeda酋长盟奥尔加Taraschenko AU -莎拉·施密特盟Hiba a海德尔盟Christa——詹妮弗·a·金盟b史伟莎AU -尼古拉斯盟加斯帕德Mackenzie c . Cervenka盟Andres a·罗德里格斯Ruiz AU - Jong吸引李盟穆罕默德Tabaeizadeh AU -艾米丽·j·吉尔摩AU -克里斯蒂Nordstrom盟- Ji Yeoun Yoo AU - Manisha g .福尔摩斯盟苏珊·赫尔曼盟Jay主管——詹妮弗·a·威廉姆斯盟盟-法比奥·a·Nascimento盟紫薇风扇盟Samaneh Nasiri AU - Mouhsin M .戴尔盟悉尼美国现金AU -丹尼尔·b·霍克盟安德鲁·j·科尔AU -埃里克·s·罗森塔尔盟萨哈尔f .征服者AU -冀萌当初太阳AU - M。Brandon Westover Y1 - 2023/03/06 UR - http://n.首页neurology.org/content/early/2023/03/06/WNL.0000000000207127.abstract N2 -背景和目标:癫痫发作和其他癫痫样脑活动模式可损害大脑并导致住院死亡,特别是当时间延长时。然而,有资格解释脑电图(EEG)数据的专家很少。以前自动化这项任务的尝试受到了小样本或标记不充分样本的限制,并且没有令人信服地证明可推广的专家级性能。对于一种自动化方法,以专家级可靠性对癫痫发作和其他癫痫样事件进行分类,目前存在一个关键的未满足的需求。本研究旨在开发和验证一种计算机算法,该算法与专家识别癫痫发作和癫痫样事件的可靠性和准确性相匹配,被称为EEG上的“发作-间期-损伤-连续”(IIIC)模式,包括癫痫发作(SZ)、偏侧性和广泛性周期性放电(LPD, GPD)和偏侧性和广泛性节律δ活动(LRDA, GRDA),以及区分这些模式与非IIIC模式。方法:我们使用来自2711名有和没有IIIC事件的患者的6095个头皮脑电图来训练深度神经网络SPaRCNet来进行IIIC事件分类。独立训练和测试数据集由50,697个脑电图片段生成,由20名研究培训的神经生理学家独立注释。 We assessed whether SPaRCNet performs at or above the sensitivity, specificity, precision, and calibration of fellowship-trained neurophysiologists for identifying IIIC events. Statistical performance was assessed via the calibration index, and by the percentage of experts whose operating points were below the model’s receiver operating characteristic curves (ROC) and precision recall curves (PRC) for the 6 pattern classes.Results: SPaRCNet matches or exceeds most experts in classifying IIIC events based on both calibration and discrimination metrics. For SZ, LPD, GPD, LRDA, GRDA, and “Other” classes, SPaRCNet exceeds the following percentages of 20 experts – ROC: 45%, 20%, 50%, 75%, 55%, 40%; PRC: 50%, 35%, 50%, 90%, 70%, 45%; and calibration: 95%, 100%, 95%, 100%, 100%, 80%, respectively.Discussion: SPaRCNet is the first algorithm to match expert performance in detecting seizures and other seizure-like events in a representative sample of EEGs. With further development, SPaRCNet may thus be a valuable tool for expedited review of EEGs. ER -
Baidu
map