Association Between Cerebral Cortical Microinfarcts and Perilesional Cortical Atrophy on 3T MRI
Citation Manager Formats
Make Comment
See Comments
This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.
Abstract
Background and Objectives Cerebral cortical microinfarcts (CMIs) are a novel MRI marker of cerebrovascular disease (CeVD) that predicts accelerated cognitive decline. Presence of CMIs is known to be associated with global cortical atrophy, although the mechanism linking the two is unclear. Our primary objective was to examine the relation between CMIs and cortical atrophy and to establish possible perilesional atrophy surrounding CMIs. Our secondary objective was to examine the role of cortical atrophy in CMI-associated cognitive impairment.
Methods Patients were recruited from 2 Singapore memory clinics between December 2010 and September 2013 and included if they received the diagnosis no objective cognitive impairment, cognitive impairment (with or without a history of stroke), or Alzheimer or vascular dementia. Cortical thickness, chronic CMIs, and MRI markers of CeVD were assessed on 3T MRI. Patients underwent cognitive testing. Cortical thickness was compared globally between patients with and without CMIs, regionally within individual patients with CMIs comparing brain regions with CMIs to the corresponding contralateral region without CMIs, and locally within individuals patients in a 50-mm radius of CMIs. Global cortical thickness was analyzed as mediator in the relation between CMI and cognitive performance.
Results Of the 238 patients (mean age 72.5 years, SD 9.1 years) enrolled, 75 had ≥1 CMIs. Patient with CMIs had a 2.1% lower global cortical thickness (B = −0.049 mm, 95% confidence interval [CI] 0.091 to −0.007, p = 0.022) compared to patients without CMIs, after correction for age, sex, education, and intracranial volume. In patients with CMIs, cortical thickness in brain regions with CMIs was 2.2% lower than in contralateral regions without CMIs (B = −0.048 mm [95% CI −0.071 to −0.026], p < 0.001). In a 20-mm radius area surrounding the CMI core, cortical thickness was lower than in the area 20 to 50 mm from the CMI core (mean difference −0.06 mm [−0.10 to −0.02], p = 0.002). Global cortical thickness was a significant mediator in the relationship between CMI presence and cognitive performance as measure with the Mini-Mental State Examination (B = −0.12 [−0.22 to −0.01], p = 0.025).
Discussion We found cortical atrophy surrounding CMIs, suggesting a perilesional effect in a cortical area many times larger than the CMI core. Our findings support the notion that CMIs affect brain structure beyond the actual lesion site.
Glossary
- ANOVA=
- analysis of variance;
- CeVD=
- cerebrovascular disease;
- CI=
- confidence interval;
- CMI=
- cortical microinfarct;
- DMS-IV=
- Diagnostic and Statistical Manual of Mental Disorders, 4th edition;
- FLAIR=
- fluid-attenuated inversion recovery;
- ICV=
- intracranial volume;
- MMSE=
- Mini-Mental State Examination;
- SVD=
- single-vessel disease;
- TE=
- echo time;
- 3D=
- 3-dimensional;
- TI=
- inversion time;
- TR=
- repetition time;
- 2D=
- 2-dimensional;
- WM=
- white matter;
- WMH=
- white matter hyperintensities
Footnotes
Go to Neurology.org/N for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.
- Received January 10, 2021.
- Accepted in final form November 16, 2021.
- © 2021 American Academy of Neurology
AAN Members
We have changed the login procedure to improve access between AAN.com and the Neurology journals. If you are experiencing issues, please log out of AAN.com and clear history and cookies. (For instructions by browser, please click the instruction pages below). After clearing, choose preferred Journal and select login for AAN Members. You will be redirected to a login page where you can log in with your AAN ID number and password. When you are returned to the Journal, your name should appear at the top right of the page.
AAN Non-Member Subscribers
Purchase access
For assistance, please contact:
AAN Members (800) 879-1960 or (612) 928-6000 (International)
Non-AAN Member subscribers (800) 638-3030 or (301) 223-2300 option 3, select 1 (international)
Sign Up
Information on how to subscribe to Neurology and Neurology: Clinical Practice can be found here
Purchase
Individual access to articles is available through the Add to Cart option on the article page. Access for 1 day (from the computer you are currently using) is US$ 39.00. Pay-per-view content is for the use of the payee only, and content may not be further distributed by print or electronic means. The payee may view, download, and/or print the article for his/her personal, scholarly, research, and educational use. Distributing copies (electronic or otherwise) of the article is not allowed.
Letters: Rapid online correspondence
REQUIREMENTS
If you are uploading a letter concerning an article:
You must have updated your disclosures within six months: http://submit.neurology.org
Your co-authors must send a completed Publishing Agreement Form to Neurology Staff (not necessary for the lead/corresponding author as the form below will suffice) before you upload your comment.
If you are responding to a comment that was written about an article you originally authored:
You (and co-authors) do not need to fill out forms or check disclosures as author forms are still valid
and apply to letter.
Submission specifications:
- Submissions must be < 200 words with < 5 references. Reference 1 must be the article on which you are commenting.
- Submissions should not have more than 5 authors. (Exception: original author replies can include all original authors of the article)
- Submit only on articles published within 6 months of issue date.
- Do not be redundant. Read any comments already posted on the article prior to submission.
- Submitted comments are subject to editing and editor review prior to posting.
You May Also be Interested in
Rituximab Therapy in the Treatment of Juvenile Myasthenia Gravis: The French Experience
Dr. Henry J. Kaminski and Dr. Sarah Wright
► Watch
Related Articles
- No related articles found.