Association of cerebrovascular reactivity and Alzheimer pathologic markers with cognitive performance
Citation Manager Formats
Make Comment
See Comments
This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.
Abstract
Objective To determine whether MRI-based cerebrovascular reactivity (CVR) can predict cognitive performance independently of Alzheimer pathologic markers, we studied the relationship between cognition, CVR, and CSF-derived β-amyloid42 (Aβ42) and tau in a group of elderly individuals with mixed Alzheimer and vascular cognitive impairment and dementia.
Methods This was a cross-sectional study of 72 participants 69 ± 8 years of age consisting of individuals with normal cognition (n = 28) and cognitive impairment (n = 44) (including 36 with mild cognitive impairment [MCI] and 8 with mild dementia). CVR was measured with hypercapnia-MRI. Whole-brain CVR (percent blood oxygen level–dependent per 1 mm Hg Etco2) was used to estimate vasodilatory capacity. Montreal Cognitive Assessment (MoCA) scores, cognitive domains scores, and a global composite cognitive score were obtained. AD biomarkers included CSF assays of Aβ42 and tau.
Results Whole-brain CVR was lower in the impaired (mean ± SE, 0.132 ± 0.006%/mm Hg) compared to the normal (0.151 ± 0.007%/mm Hg) group (β = −0.02%/mm Hg; 95% confidence interval [CI] −0.038 to −0.001). After adjustment for CSF Aβ42 and tau, higher whole-brain CVR was associated with better performance on the MoCA (β = 29.64, 95% CI 9.94–49.34) and with a global composite cognitive score (β = 4.32, 95% CI 0.05–8.58). When the CVR marker was compared with the Fazekas score based on white matter hyperintensities and vascular risk-score in a single regression model predicting the MoCA score, only CVR revealed a significant effect (β = 28.09, 95% CI 6.14–50.04), while the other 2 measures were not significant.
Conclusions CVR was significantly associated with cognitive performance independently of AD pathology. Whole-brain CVR may be a useful biomarker for evaluating cognitive impairment related to vascular disease in older individuals.
Classification of evidence This study provides Class II evidence that CVR was significantly associated with cognitive performance independent of AD pathology.
Glossary
- Aβ42=
- β-amyloid42;
- AD=
- Alzheimer disease;
- ARIC=
- Atherosclerosis Risk in Communities;
- BMI=
- body mass index;
- BOLD=
- blood oxygen level–dependent;
- CI=
- confidence interval;
- CVR=
- cerebrovascular reactivity;
- FLAIR=
- fluid-attenuated inversion recovery;
- MCI=
- mild cognitive impairment;
- MoCA=
- Montreal Cognitive Assessment;
- TE=
- echo time;
- TI=
- inversion time;
- TR=
- repetition time;
- VCID=
- vascular cognitive impairment and dementia;
- VRS=
- vascular risk score;
- WMH=
- white matter hyperintensities
Footnotes
Go to Neurology.org/N for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.
Class of Evidence: NPub.org/coe
- Received September 20, 2019.
- Accepted in final form March 17, 2020.
- © 2020 American Academy of Neurology
AAN Members
We have changed the login procedure to improve access between AAN.com and the Neurology journals. If you are experiencing issues, please log out of AAN.com and clear history and cookies. (For instructions by browser, please click the instruction pages below). After clearing, choose preferred Journal and select login for AAN Members. You will be redirected to a login page where you can log in with your AAN ID number and password. When you are returned to the Journal, your name should appear at the top right of the page.
AAN Non-Member Subscribers
Purchase access
For assistance, please contact:
AAN Members (800) 879-1960 or (612) 928-6000 (International)
Non-AAN Member subscribers (800) 638-3030 or (301) 223-2300 option 3, select 1 (international)
Sign Up
Information on how to subscribe to Neurology and Neurology: Clinical Practice can be found here
Purchase
Individual access to articles is available through the Add to Cart option on the article page. Access for 1 day (from the computer you are currently using) is US$ 39.00. Pay-per-view content is for the use of the payee only, and content may not be further distributed by print or electronic means. The payee may view, download, and/or print the article for his/her personal, scholarly, research, and educational use. Distributing copies (electronic or otherwise) of the article is not allowed.
Letters: Rapid online correspondence
REQUIREMENTS
You must ensure that your Disclosures have been updated within the previous six months. Please go to our Submission Site to add or update your Disclosure information.
Your co-authors must send a completed Publishing Agreement Form to Neurology Staff (not necessary for the lead/corresponding author as the form below will suffice) before you upload your comment.
If you are responding to a comment that was written about an article you originally authored:
You (and co-authors) do not need to fill out forms or check disclosures as author forms are still valid
and apply to letter.
Submission specifications:
- Submissions must be < 200 words with < 5 references. Reference 1 must be the article on which you are commenting.
- Submissions should not have more than 5 authors. (Exception: original author replies can include all original authors of the article)
- Submit only on articles published within 6 months of issue date.
- Do not be redundant. Read any comments already posted on the article prior to submission.
- Submitted comments are subject to editing and editor review prior to posting.
You May Also be Interested in
Dr. Dennis Bourdette and Dr. Lindsey Wooliscroft
► Watch
Related Articles
- No related articles found.
Topics Discussed
Alert Me
Recommended articles
-
Article
Cerebrovascular reactivity in cerebral amyloid angiopathy, Alzheimer disease, and mild cognitive impairmentAaron R. Switzer, Ikreet Cheema, Cheryl R. McCreary et al.Neurology, July 08, 2020 -
Articles
EEG-fMRIAdding to standard evaluations of patients with nonlesional frontal lobe epilepsyF. Moeller, L. Tyvaert, D. K. Nguyen et al.Neurology, December 07, 2009 -
Article
Intracranial hemodynamic relationships in patients with cerebral small vessel diseaseGordon W. Blair, Michael J. Thrippleton, Yulu Shi et al.Neurology, May 04, 2020 -
Articles
Cortical/subcortical BOLD changes associated with epileptic dischargesAn EEG-fMRI study at 3 TPaolo Federico, John S. Archer, David F. Abbott et al.Neurology, April 11, 2005