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Abstract
Objective
To investigate the relationship between the ATN classification system (amyloid, tau, neuro-
degeneration) and risk of dementia and cognitive decline in individuals with subjective cog-
nitive decline (SCD).

Methods
We classified 693 participants with SCD (60 ± 9 years, 41% women, Mini-Mental State Exami-
nation score 28 ± 2) from the AmsterdamDementia Cohort and Subjective Cognitive Impairment
Cohort (SCIENCe) project according to the ATNmodel, as determined by amyloid PET or CSF
β-amyloid (A), CSF p-tau (T), and MRI-based medial temporal lobe atrophy (N). All underwent
extensive neuropsychological assessment. For 342 participants, follow-up was available (3 ± 2
years). As a control population, we included 124 participants without SCD.

Results
Fifty-six (n = 385) participants had normal Alzheimer disease (AD) biomarkers (A–T–N–),
27% (n = 186) had non-AD pathologic change (A–T–N+, A–T+N–, A–T+N+), 18% (n = 122)
fell within the Alzheimer continuum (A+T–N–, A+T–N+, A+T+N–, A+T+N+). ATN profiles
were unevenly distributed, with A–T+N+, A+T–N+, and A+T+N+ containing very few par-
ticipants. Cox regression showed that compared to A–T–N–, participants in A+ profiles had
a higher risk of dementia with a dose–response pattern for number of biomarkers affected.
Linear mixed models showed participants in A+ profiles showed a steeper decline on tests
addressing memory, attention, language, and executive functions. In the control group, there
was no association between ATN and cognition.

Conclusions
Among individuals presenting with SCD at a memory clinic, those with a biomarker profile
A–T+N+, A+T–N–, A+T+N–, and A+T+N+ were at increased risk of dementia, and showed
steeper cognitive decline compared to A–T–N– individuals. These results suggest a future
where biomarker results could be used for individualized risk profiling in cognitively normal
individuals presenting at a memory clinic.
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The research framework for Alzheimer disease (AD) di-
agnosis, developed under the auspices of the National In-
stitute on Aging and Alzheimer’s Association, proposes to
categorize individuals based on biomarker evidence of pa-
thology using the so-called ATN classification system (amy-
loid, tau, neurodegeneration).1 According to the ATN system,
each individual is rated for the presence of β-amyloid (CSF Aβ
or amyloid PET: “A”), hyperphosphorylated tau (CSF p-tau
or tau PET: “T”), and neurodegeneration (atrophy on
structural MRI, FDG PET, or CSF total tau: “N”), resulting in
8 possible biomarker combinations.

Several former studies have applied the ATN classification
scheme.2–8 Of these, 2 have used a cross-sectional design in
cognitively unimpaired participants,2,3 and one focused on
biomarker inconsistencies in healthy controls, patients with mild
cognitive impairment (MCI), and patients with dementia.4

Three former studies had a longitudinal design, evaluating the
association between ATN and cognitive decline in elderly
patients without dementia (cognitively normal or MCI).5–7

Subjective cognitive decline (SCD) is characterized by self-
perceived decline in cognition, but comparable cognitive
performance to peers.9,10 In SCD, abnormal amyloid, ab-
normal tau, and signs of neurodegeneration are associated
with an increased risk of cognitive decline.11–17 Longitudinal
studies investigating the ATN classification scheme in relation
to clinical progression in SCD, which has been described as
stage 2 in the diagnostic framework,1 are not yet available.

We aimed to (1) examine the distribution and clinical cor-
relates of the ATN biomarker profiles in individuals pre-
senting with SCD at a memory clinic and (2) investigate the
ATN predictive value for risk of clinical decline over time.

Methods
Population
We included 693 participants with SCD from the Amsterdam
Dementia Cohort and the Subjective Cognitive Impairment
Cohort (SCIENCe) project at the Alzheimer Center
Amsterdam.18–20 All participants underwent a standardized
diagnostic workup, which consisted of a neurologic, physical,
and neuropsychological evaluation, and brain MRI.18,19 We
used the Geriatric Depression Scale (GDS) to assess de-
pressive symptoms.21,22 Participants were labeled SCD in
a multidisciplinary consensus meeting when clinical and

cognitive testing was normal and criteria for MCI, dementia,
or other neurologic or psychiatric conditions (e.g., major
depression, schizophrenia) were not met.10,23 Follow-up di-
agnoses were available for 342 participants (3 ± 2 years).
These participants were on average 3 years older, but other-
wise comparable to the entire sample of 693 participants. At
follow-up, diagnoses were re-evaluated as SCD, MCI, AD
dementia, or other types of dementia (frontotemporal de-
mentia [FTD], primary progressive aphasia, vascular de-
mentia, dementia with Lewy bodies).24–27 The clinical
endpoints were (1) progression to dementia and (2) pro-
gression to MCI or dementia.

Participants were included for the current project when MRI
and CSF were available within 1 year of the diagnosis.

Standard protocol approvals, registrations,
and patient consents
The research is in accordance with ethical consent by VU
University and the Helsinki Declaration of 1975. Written
informed consent was available for all patients.

Neuropsychological assessment
All participants received an extensive standardized neuro-
psychological assessment.18 We used the Mini-Mental State
Examination (MMSE) for global cognition. To asses memory,
we used the Visual Association Test version A (VAT-A) and
total immediate and delayed recall of the Dutch version of the
Rey Auditory Verbal Learning Test (RAVLT). For language,
we used category fluency (animals). To assess attention, we
used the Trail-Making Test A (TMT-A), the forward condi-
tion of the Digit Span, and Stroop task I and II (naming and
color naming). To assess executive functioning we used the
TMT-B, Digit Span (backwards), and Stroop task III
(color–word). Raw test scores for TMT and Stroop were log
transformed, because the data were right-skewed, and sub-
sequently inverted, such that a lower score implies worse
performance. The proportion of missing tests ranged from
7.6% for the TMT-A to 19.1% for the Stroop III. In total,
1,424 neuropsychological investigations of 693 patients were
available (299 ≥2; range 2–12, median 3).

MRI studies
All participants underwent anMRI scan of the brain (Siemens
Avanto, n = 7; GE Discovery MR750, n = 14; Impax, n = 119;
3T Philips Ingenuity TF PET/MR system, n = 123; 1.5T GE
Signa HDxt, n = 21; 3.0T GE Signa HDxt, n = 262; 1.5T
Siemens Sonata, n = 27; 3T Toshiba Vantage Titan, n = 119;

Glossary
Aβ = β-amyloid; AD = Alzheimer disease; CI = confidence interval; FLAIR = fluid-attenuated inversion-recovery; FTD =
frontotemporal dementia;GCA = global cortical atrophy;GDS = Geriatric Depression Scale;HR = hazard ratio; LMM = linear
mixed model; MBq = megabecquerel; MCI = mild cognitive impairment; MMSE = Mini-Mental State Examination; MTA =
medial temporal lobe atrophy; p-tau = phosphorylated threonine 181; PiB = Pittsburgh compound B; RAVLT = Rey Auditory
Verbal Learning Test; SCD = subjective cognitive decline;TMT =Trail-Making Test;VAT-A =Visual AssociationTest versionA.
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Vision, n = 1). The protocol included 3D T1-weighted
images, 3D T2-weighted images, and 3D T2-weighted fluid-
attenuated inversion-recovery (FLAIR) images.18 Visual rat-
ing of medial temporal lobe atrophy (MTA) was performed
on coronal T1-weighted images averaging scores for the left
and right sides (range 0–4).28 Posterior atrophy was rated
using sagittal, axial, and coronal planes of T1 and FLAIR-
weighted images averaging scores for the left and right sides
(range 0–3).29 Global cortical atrophy (GCA) was rated using
axial FLAIR images (range 0–3).30 The severity of white
matter hyperintensities was determined on the FLAIR se-
quence using the Fazekas scale (range 0–3).31 Lacunes were
defined as deep lesions (3–15 mm) with CSF-like signal on all
sequences. They were counted and dichotomized into absent
(0) of present (≥1 lacune). Microbleeds were defined as small
dot-like hypointense lesions on T2-weighted images. They
were also counted and dichotomized into absent (0) or
present (≥1 microbleed). An experienced neuroradiologist
reviewed all scans.

CSF studies
CSF was obtained by lumbar puncture between the L3/L4,
L4/L5, or L5/S1 intervertebral space by a 25-gauge needle
and syringe and collected in polypropylene tubes.32 Aβ1-42,
total tau, and tau phosphorylated threonine 181 (p-tau) were
measured using sandwich ELISAs (Innotest β-amyloid1-42, n =
579; Innotest hTAU-Ag and Innotest PhosphoTAU-181p).

33

CSF Aβ levels were adjusted for the drift in CSF biomarker
analyses that occurred over the years.34 For 9 participants,
we used Elecsys for analyses of Aβ. These values were
transformed to the Innotest-equivalent values by the fol-
lowing formula: Elecsys Aβ (pg/mL) = −365 + 1.87 ×
Innotest Aβ (pg/mL).35

PET studies
For 105 participants, amyloid PET was performed in research
context using the tracers [18F]Florbetapir (n = 19), [18F]
Florbetaben (n = 65), [18F]Flutemetamol (n = 10), or [11C]
Pittsburgh compound B (PiB, n = 11). The tracers were ad-
ministered intravenously through a cannula. PET scans were
acquired on the following systems: Gemini TF PET-CT, In-
genuity TF PET-CT, and Ingenuity PET/MRI (Philips
Healthcare, Best, the Netherlands). During scans, laser beams
were used to monitor head movement. For [18F]Florbetapir
imaging, participants were injected with a tracer dose of ap-
proximately 370 megabecquerel (MBq) [18F]Florbetapir.20

Ninety-minute dynamic PET emission scans were obtained
simultaneously starting with tracer injection. For [18F]Flor-
betaben imaging, participants were injected with a tracer dose
of approximately 300 MBq [18F]Florbetaben.36 The image
acquisition window extended from 90 to 110 minutes (4 × 5
minutes frames) after dose injection. For [18F]Flutemetamol
imaging, participants were injected with approximately 191
MBq [18F]Flutemetamol.37 The image acquisition window
extended from 90 minutes to 110 minutes (4 × 5 minutes
frames) after dose injection. For [11C]PiB imaging, partic-
ipants were injected with a tracer dose of approximately 365

MBq [11C]PiB in younger participants and approximately 382
MBq [11C]PiB in older participants.38,39 Ninety-minute dy-
namic PET emission scans were obtained immediately start-
ing with tracer injection.

All scans were visually rated as positive or negative by
a trained nuclear medicine physician.

ATN classification
We used amyloid PET (n = 105) or CSF Aβ (n = 588) to
determine whether a participant was A– or A+. If both
measures were available, the PET result was used. CSF con-
centrations were considered amyloid positive <813 pg/mL.34

For tau (T), we used CSF p-tau concentrations. Values were
considered p-tau positive >52 pg/mL.40 We used the average
MTA to determine neurodegeneration (N). For participants
<65 years of age, an average MTA score ≥1 was considered
positive; for participants ≥65 years of age, an average MTA
score ≥1.5 was considered positive.41 Because a number of
ATN profiles contained very few participants, we also clus-
tered the 8 biomarker profiles into 3 categories. The A–T–N–
profile was labeled as the “normal AD biomarker” category.
We clustered the remaining A– profiles (A–T–N+, A–T+N–,
and A–T+N+) as “non-AD pathologic change” and we clus-
tered all A+ profiles (A+T–N–, A+T–N+, A+T+N–, A+T+-
N+) as “Alzheimer continuum.”1

Control group
For comparison, we also included a control group without
subjective cognitive decline, recruited from the EMIF-AD
PreclinAD study.42 We included 124 participants, in-
cluding 53 monozygotic twin pairs and 18 singletons. For
119 participants, A was determined by visual read of [18F]
Flutemetamol PET. Levels of CSF Aβ40 and Aβ42 and
p-tau were analyzed using kits from ADx Neurosciences/
Euroimmun. CSF concentrations were considered amy-
loid positive when the CSF Aβ42/40 ratio was <0.065 (n = 5
for whom amyloid PET was not available). To determine
T, we used the 75th percentile of p-tau (≥86 pg/mL).
N was determined using average MTA (<65 years, MTA
≥1; ≥65 years, MTA ≥1.5 considered positive). Neuro-
psychological testing procedures for the control group
were largely similar to procedures for participants with
SCD. For 121 participants, follow-up assessments were
available (2 ± 0 years).

Statistics
We compared demographic and clinical variables among the 8
ATN biomarker profiles. For continuous variables, we used
analysis of variance and Kruskal-Wallis where appropriate and
post hoc Tukey test if the assumption for homogeneity of
variances was met and Games-Howell if the assumption was
not met. For dichotomous variables, we used Fisher exact test,
and post hoc looked at standardized residuals with values
<−1.96 or >1.96 considered significant. We used χ2 test to
compare the distribution of ATN profiles between the SCD
and control group.
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We performed Cox proportional hazards analyses to evaluate
the association between 8-profile ATN classification (A–T–
N– reference) and clinical progression to dementia. Analyses
were adjusted for age, sex, and education. In additional anal-
yses, we used progression to MCI or dementia as outcome.

To explore the additive effect of A-status and memory
function, we ran an additional analysis after constructing
a new, 4-level variable: (1) A–, high memory (baseline
RAVLT delayed recall z score ≥ −1.0); (2) A–, low
memory (z score < −1.0); (3) A+, high memory; (4) A+,
low memory. Analyses were adjusted for age, sex, and
education. As reference category we used (1) A–, high
memory.

Subsequently, we assessed the associations between ATN
classification and cognitive decline using linear mixed models
(LMMs). ATN profiles (included as dummies, with the A–
T–N– profile as reference), time, and the interactions be-
tween ATN profiles and time were included as independent
variables; age, sex, and education were included as covariates;
and cognitive test scores were used as dependent variables.
Intercept and time were included as random factors. Separate
models were run for 11 individual neuropsychological tests.
We used the false discovery rate method to correct for mul-
tiple testing with q set at 0.05.

For the analyses in the control group without SCD, we added
family as a random factor to account for within-twin pair
dependence.

All analyses were done using SPSS version 22. p Values <0.05
were considered significant. Kaplan-Meier curves and figures
showing association between ATN and cognitive decline were
made with R studio 3.4.2.

Data availability
Any data not published within the article may be shared upon
request.

Results
Baseline demographics and clinical features
At baseline, the 693 participants with SCDwere on average 60
± 9 years old, 283 (41%) were female, and MMSE was 28 ± 2.
With 385 (56%) participants, the majority of the participants
was negative for each of the 3 biomarkers (A–T–N–, normal
AD biomarkers). Figure 1 and table 1 show the distribution,
demographics, and clinical characteristics of all biomarker
profiles (3-category comparison provided in table e-1, doi.
org/10.5061/dryad.bg79cnp71). Participants were older in
A+ profiles and in profiles with a higher number of biomarkers
affected. There were no significant differences in sex, educa-
tion, MMSE, or GDS scores among ATN profiles. APOE e4
varied by ATN biomarker profiles, with A+ profiles containing
the highest number of APOE e4 carriers.

Comparing biomarker values among ATN profiles, we found
that total tau (not included in our ATN definition) was lowest
in A–T–N– and was higher in T+ groups, but not in N+
groups. P-tau and total tau strongly correlated with each other
(Spearman ρ 0.90, p ≤ 0.00). GCA scores were higher in N+
profiles (Spearman ρ MTA ; GCA: 0.35, p ≤ 0.00). There
was no difference in any of the MRI measures of small vessel
disease among groups.

Participants in the control group without SCD were on av-
erage 9 years older than our SCD sample and more often
female (52% vs 41%; table e-2, doi.org/10.5061/dryad.
bg79cnp71). The distribution of ATN profiles differed be-
tween the 2 cohorts (p = 0.00). The prevalence of A–T–N–
was similar in both cohorts, but N+ biomarker profiles were
more prevalent in the control group (23% vs 11%), while the
A+ was somewhat more common in our SCD sample (18% vs
14%). In the control group, age differed across ATN profiles,
with on visual inspection a stronger age effect than in the SCD
sample. ATN profiles also differed on MMSE.

Risk of dementia
Table 2 shows that after 3 ± 2 years of follow-up, 16 (21%)
participants in A+ profiles showed incident dementia (AD, n
= 14; non-AD, n = 2), compared to 2 (1%) participants in
A–T–N– (non-AD n = 2). The supplemental e-Box, doi.org/
10.5061/dryad.bg79cnp71, provides a case description of the
2 participants in A–T+N– and A–T+N+ who progressed to
AD dementia and 2 participants in A–T–N– who progressed
to dementia. Both A– participants who progressed to AD
dementia became A+T+N+ on follow-up. The participants
who initially were A–T–N– progressed to primary progressive
aphasia and to possible FTD.

Cox proportional hazard analyses showed that compared to
A–T–N–, participants in the A+ profiles were at increased risk
of dementia with an incremental increase in hazard ratio (HR)
(A+T–N–, HR 9.7 [1.6–59.3]; A+T+N–, HR 20.2

Figure 1 Distribution of the ATN biomarker profiles in
subjective cognitive decline

Pie chart illustrates the distribution of the 8-profile and 3-category ATN
classification. AD = Alzheimer disease.
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Table 1 Baseline demographics, PET, CSF, and MRI values in 8-profile ATN classification

A–T–N–, n = 385
(55.6%)

A–T–N+, n = 39
(5.6%)

A–T+N–, n = 137
(19.8%)

A–T+N+, n = 10
(1.4%)

A+T–N–, n = 43
(6.2%)

A+T–N+, n = 14
(2.0%)

A+T+N–, n = 54
(7.8%)

A+T+N+, n = 11
(1.6%)

p
Value

Demographics

Age, y, mean (SD) 57.2 (8.3) 59.0 (9.0) 61.1 (8.7) 60.0 (7.5) 62.8 (7.1) 65.8 (9.3) 66.7 (6.6) 68.8 (9.9) 0.00a

Sex, n female (%) 155 (40.3) 11 (28.2) 55 (40.1) 4 (40.0) 20 (46.5) 5 (35.7) 29 (53.7) 4 (36.4) 0.41

Education, mean (SD) 5.4 (1.3) 5.5 (1.1) 5.5 (1.3) 4.7 (1.3) 5.3 (1.4) 5.8 (1.4) 5.5 (1.2) 5.3 (0.9) 0.41

MMSE, mean (SD) 28 (2) 28 (2) 28 (2) 27 (2) 28 (1) 28 (2) 28 (1) 28 (2) 0.46

APOE «4 carriers, n (%) 103 (27.2) 13 (35.1) 51 (38.6) 3 (30.0) 25 (59.5) 8 (57.1) 35 (68.6) 7 (63.6) 0.00a

Depressive symptoms

GDS score, mean (SD) 3.1 (2.5) 3.1 (3.3) 3.2 (3.0) 4.2 (2.0) 2.5 (2.5) 3.2 (4.5) 2.6 (3.2) 2.0 (1.8) 0.63

Amyloid PET

Amyloid PET, n positive/total
(n = 105)

0/54 0/8 0/17 0/2 8/8 1/1 14/14 1/1 0.00a

CSF

Aβ, mean (SD) (n = 588) 1,125.2 (154.9) 1,116.4 (203.9) 1,213.2 (204.3) 1,149.1 (244.7) 698.9 (100.5) 690.4 (122.0) 654.3 (105.6) 620.0 (103.0) 0.00a

p-tau, mean (SD) 38.1 (8.6) 36.8 (11.0) 66.0 (12.1) 76.8 (40.9) 41.3 (9.7) 32.1 (9.1) 87.3 (31.9) 95.5 (55.4) 0.00a

Total tau, mean (SD) 215.8 (74.0) 210.1 (67.5) 400.2 (130.9) 532.4 (375.1) 251.3 (80.8) 182.2 (70.0) 629.9 (329.9) 622.4 (337.9) 0.00a

MRI

MTA, mean (SD)b 0.2 (0.3) 1.2 (0.3) 0.2 (0.3) 1.3 (0.4) 0.3 (0.4) 1.4 (0.4) 0.3 (0.4) 1.5 (0.5) 0.00a

GCA, mean (SD) 0.2 (0.4) 0.7 (0.6) 0.4 (0.6) 0.5 (0.9) 0.3 (0.5) 0.6 (0.6) 0.4 (0.5) 0.6 (0.8) 0.00a

PA, mean (SD)b 0.4 (0.6) 0.7 (0.8) 0.6 (0.7) 0.6 (0.8) 0.5 (0.5) 0.6 (0.5) 0.7 (0.6) 1.1 (0.8) 0.00a

Fazekas, mean (SD) 0.5 (0.6) 0.7 (0.8) 0.6 (0.6) 0.8 (0.8) 0.8 (0.7) 1.1 (0.9) 0.9 (0.7) 0.9 (0.8) 0.00a

Lacunes, n (%)c 12 (3.1) 2 (5.1) 8 (5.8) 1 (10.0) 0 (0.0) 1 (8.3) 4 (7.4) 1 (9.1) 0.13

Microbleeds, n (%)c 39 (10.3) 8 (21.1) 16 (11.9) 0 (0.0) 8 (18.6) 3 (23.1) 13 (24.1) 5 (45.5) 0.00a

Abbreviations: Aβ =β-amyloid; GCA= global cortical atrophy; GDS =Geriatric Depression Scale;MMSE =Mini-Mental State Examination;MTA=medial temporal lobe atrophy; p-tau = phosphorylated threonine 181; PA =parietal
atrophy.
Analyses were performed using analysis of variance and Fisher exact test. Education is rated using the Dutch Verhage system.50
a p <0.05.
b Average between left and right side.
c Values are dichotomized into 0 counts and ≥1 counts. N shown is number of participants with ≥1 count.
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[3.7–110.2]; and A+T+N+, HR 62.3 [9.5–408.4]; figure 2).
Within the A– profiles, participants in A–T+N+ were at in-
creased risk of dementia (HR 18.5 [1.6–211.4]), but partic-
ipants in A–T+N– and A–T–N+were not. When we repeated
the analyses with clinical progression to MCI or dementia as
outcome, a similar pattern emerged, although the HRs were
lower, caused by a higher number of participants progressing
to MCI in the reference profile.

As an additional analysis, we performed Cox analyses based
on the 3 clustered ATN categories, as shown in table e-3 and
figure e-1 (doi.org/10.5061/dryad.bg79cnp71). We found that
compared to participants with normal AD biomarkers, Alz-
heimer continuum participants had a strongly increased risk of
progression to dementia (HR, 17 [95% confidence interval (CI),
3.6–79]). The risk associated with non-AD pathologic change
was 3.2 (95% CI, 0.6–17.8), but did not reach significance.

Subsequently, we ran an additional analysis to assess the pu-
tative combined effect of memory impairment and amyloid
status. We found that the effects of memory and amyloid
positivity seem additive, as—compared to individuals with
a high RAVLT delayed recall score and no evidence of
amyloid—those with both a low RAVLT delayed recall score
and positive amyloid were at the highest risk of dementia
(HR, 18.9 [5.5–64.6]; table 3). Participants with only low
baseline memory were not at increased risk of dementia (HR,
1.2 [0.1–11.0]), but participants with only a positive A bio-
marker alone were (HR, 8.8 [2.3–34.2]).

Cognitive decline
We used LMMs to assess the association between ATN
classification and cognitive test performance. Figure 3 shows
the observed raw neuropsychological test scores and

trajectories over time; table 4 shows estimated baseline cog-
nitive tests scores and annual change by ATN profile. There
were a few modest associations between ATN profile and
baseline cognitive test performance. By contrast, we found
significant interactions of ATN profile with time for a large
number of tests. Participants in A+T+N– and A+T+N+
showed a steeper decline over time than A–T–N– on all
memory tests. Other A+ profiles also showed a steeper de-
cline on tests for memory, attention, and executive function
(A+T–N– on VAT-A and TMT-B; A+T+N– on TMT-A,
TMT-B, and Stroop III). A–T+N+ was the only A– profile
associated with steeper decline over time, namely on 2
memory tests (RAVLT immediate and delayed recall).

Table e-4 and figure e-2 (doi.org/10.5061/dryad.bg79cnp71)
show the results of the additional analyses based on 3 clus-
tered ATN categories. There was a main effect of ATN cat-
egory on RAVLT delayed recall, implying that participants
classified in the Alzheimer continuum had a lower baseline
memory performance than participants with normal AD
biomarkers. There were no associations with baseline score
for any of the other cognitive tests. Participants in the Alz-
heimer continuum showed a steeper decline over time in tests
for memory, attention, language, and executive functioning
compared to the normal AD biomarker category. Participants
with non-AD pathologic change only showed a steeper de-
cline over time on RAVLT delayed recall.

In the control group without SCD, only one participant
(A+T+N+) progressed to dementia, precluding any formal
testing. In the control group, we found no significant associ-
ations between ATN profiles and (cross-sectional or longi-
tudinal) cognitive test score (table e-5, doi.org/10.5061/
dryad.bg79cnp71).

Table 2 Clinical progression in 8 ATN biomarker profiles

N

Clinical progression details Cox proportional hazard models

Total progression, n (%) MCI, n AD, n
Other
dementia, n Progression to dementiaa Progression to MCI or dementiaa

A–T–N– 175 9 (5) 7 0 2b 1 (reference) 1 (reference)

A–T–N+ 17 0 (0) 0 0 0 e e

A–T+N– 66 5 (8) 2 1 2c 3.2 (0.5–19.3) 1.0 (0.3–3.1)

A–T+N+ 7 1 (14) 0 1 0 18.5 (1.6–211.4) 3.6 (0.4–29.7)

A+T–N– 28 7 (25) 4 3 0 9.7 (1.6–59.3) 5.3 (2.0–14.4)

A+T–N+ 7 0 (0) 0 0 0 e e

A+T+N– 35 18 (51) 8 8 2d 20.2 (3.7–110.2) 9.1 (3.6–22.5)

A+T+N+ 7 6 (86) 3 3 0 62.3 (9.5–408.4) 30.9 (9.6–99.3)

Abbreviations: AD = Alzheimer disease; FTD = frontotemporal dementia; MCI = mild cognitive impairment.
a Cox proportional hazard models, adjusted for age, sex, and education. Data presented as hazard ratio (95% confidence interval).
b One participant progressed to possible FTD; one participant progressed to primary progressive aphasia due to FTD.
c One participant progressed to FTD; one participant progressed to vascular dementia.
d One participant progressed to vascular dementia; one participant progressed to dementia with Lewy bodies.
e Did not converge.
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Discussion
In a sample of individuals with SCD presenting at a memory
clinic, we found that Alzheimer continuum profiles (A+T–
N–, A+T–N+, A+T+N–, A+T+N+) together make up one

fifth and non-AD pathologic change profiles (A–T–N+, A–
T+N–, A–T+N+) one third of cases. Most frequent is the
profile with all biomarkers normal, observed in more than half
of participants. Compared to A–T–N–, participants in A+
profiles were at increased risk of dementia and showed

Figure 2 Kaplan-Meier curves illustrating clinical progression in subjective cognitive decline

Kaplan-Meier curves illustrate clinical pro-
gression to dementia (A) and to mild cognitive
impairment or dementia (B). Separate lines rep-
resent the 8 ATN biomarker profiles. The num-
bers at risk for time points 0, 1, 2, 3, 4, and 5 years
are depicted below the figure.
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a steeper subsequent cognitive decline over the years on tests
for memory, attention, and executive functioning. Participants
in A–T+N+ showed steeper decline on 2 memory tests, but
other A– profiles were comparable to A–T–N– in terms of
their cognitive trajectories.

We extend on former findings by longitudinally evaluating the
ATN model in a population of cognitively normal individuals
with SCD. In this clinically relevant population of individuals
with SCD, particularly the A+ profiles defined in the ATN
model have predictive value in terms of risk of future dementia
and rate of cognitive decline; however, not all profiles were
sufficiently populated to warrant reliable risk estimates. This
illustrates that biomarker information helps to identify those at
risk, but also shows that the 8 different profiles as defined in the
ATNmodel are somewhat difficult to implement.We therefore
supplemented our results with a more robust categorization in
3 clustered ATN categories (normal AD biomarkers, Alz-
heimer continuum, non-AD pathologic change). The results of
the analyses using the 3 clustered categories confirm that of all
biomarkers assessed, especially the A biomarker is strongly
associated with clinical progression and cognitive decline.

We found an uneven distribution of ATN profiles. This ob-
servation is largely consistent with former studies in individuals
without dementia, although the exact prevalence of specific
profiles somewhat differs between studies.2–4,6,7 Compared to
earlier studies, most noteworthy is that more than half of our
participants in both the SCD and control group were negative
for all biomarkers (56% and 57%, respectively), while other
studies found a much lower prevalence (29%–39%).2,6,7 On the
other end of the profile spectrum, we found a very low preva-
lence of A+T+N+ in our SCD sample (2%), while other studies
found higher percentages (9%–12%).2,6,7 The fact that our SCD
sample is 10–15 years younger than other cohorts and was
carefully selected to be cognitively normal at baseline probably
explains this effect and explains our apparently lower amyloid
rate, as age has been shown to play a large role in biomarker
positivity.2,43,44 At the same time, our results show that in this
population, the observation of amyloid is not benign, as it is
strongly associated with future dementia. Discrepancies with

other studies can be explained by their defining both T and N
based on CSF (p-tau and total tau). Due to the high correlation
between these 2 measures (also shown in the current study),
profiles like A+T+N– and A–T+N– become highly improbable
when both T and N are defined based on CSF. When this
approach was chosen, none of the participants falls into these
mutually exclusive profiles.3 In our study, we used CSF p-tau to
define T and MRI-based medial temporal lobe atrophy for N,
because they are both widely available and clearly measure
different aspects of the disease, as evidenced by the fact that
both categories were populated by a considerable fraction of the
sample (A–T+N–: 19.8%; A–T–N+: 5.6%).Whenwe compare
our SCD sample to our own control group without SCD, we
found a larger number of participants whowere positive for N in
our control group, resulting in different percentages in A–T–N+
(6% vs 17%) and A–T+N– (20% vs 10%). In addition, A+
seemed somewhat less prevalent in the controls than in indi-
viduals with SCD (14% vs 18%), particularly when taking into
account that controls were older than individuals with SCD. It
should be noted our study was not designed to study the effect
of SCD on risk of progression, but rather to evaluate the clinical
usefulness of ATN profiles in this clinically relevant population.
Adding SCD as an additional factor to the ATN scheme
(“ATN-S”) would increase the number of categories evenmore,
and our current results show that the high number of categories
is already a limitation to the clinical applicability of the ATN
scheme.

We observed that participants in 3 A+ profiles showed a faster
cognitive decline over the years on tests for memory, atten-
tion, and executive functioning. This is largely in line with
a study conducted by the Mayo Clinic that found especially
A+T+N–, A+T–N+, and A+T+N+ show a steeper decline on
memory tests compared to A–T–N–.6 Another study found
that only A+T+N+ had a greater decline on a cognitive factor
score.7 Our results provide further support for the observation
that effect sizes of cognitive decline seem to increase with the
number of biomarkers affected.

We found participants in A+ profiles to be at increased risk of
dementia. Of note, within the 3 A+ profiles, we observed risk

Table 3 Association between baseline Rey Auditory Verbal Learning Test (RAVLT) delayed recall score and clinical
progression

N Total progression, n (%)

Cox proportional hazard models

Progression to dementiaa Progression to MCI or dementiaa

A– High RAVLT 206 7 (3%) 1 (reference) 1 (reference)

A– Low RAVLT 49 6 (12%) 1.2 (0.1–11.0) 5.0 (1.6–15.7)

A+ High RAVLT 49 15 (31%) 8.8 (2.3–34.2) 9.6 (3.7–25.0)

A+ Low RAVLT 23 14 (61%) 18.9 (5.5–64.6) 37.3 (14.2–97.9)

Abbreviation: MCI = mild cognitive impairment.
a Cox proportional hazard models, adjusted for age, sex, and education. Data presented as hazard ratio (95% confidence interval).
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estimates to increase with the number of biomarkers affected,
illustrating the added value of having biomarker information
on all 3 biomarkers available, and—conversely—that lumping
all A+ profiles together may obscure differences in outcomes
of the different biomarker categories. The 2 previous

longitudinal studies investigating ATN in cognitively un-
impaired participants assessed cognitive trajectories, but did
not assess risk of clinical progression to MCI or dementia.6,7

There is only one longitudinal study evaluating the risk of
dementia associated with the ATN classification, using an

Figure 3 Spaghetti plots illustrating raw neuropsychological test performance over time in subjective cognitive decline

Spaghetti plots show individual neuro-
psychological trajectories on 6 neuro-
psychological tests: (A) Visual Association Test
version A (VAT-A); (B) Rey Auditory Verbal
Learning Test (RAVLT) delayed recall; (C) animal
fluency; (D) Trail-Making Test, part A (TMT-A); (E)
Stroop I; (F) Stroop III. Separate lines represent
the unadjusted mean trajectory of the 8 ATN
profiles with 95% confidence intervals. Figures
represent raw test scores.
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Table 4 Relationship between ATN biomarker profiles and baseline and longitudinal cognition

Baseline Longitudinal

A–T–N+ A–T+N– A–T+N+ A+T–N– A+T–N+ A+T+N– A+T+N+ A–T–N+ A–T+N– A–T+N+ A+T–N– A+T–N+ A+T+N– A+T+N+

VAT-A −0.24
(0.14)

−0.00
(0.09)

0.15
(0.25)

−0.10
(0.13)

0.07
(0.24)

−0.28
(0.12)

0.39
(0.25)

−0.05
(0.15)

−0.02
(0.08)

−0.14
(0.24)

−0.35
(0.11)a

−0.26
(0.29)

−0.60
(0.10)a

−1.07
(0.23)a

RAVLT immediate
recall

0.83
(1.45)

0.60
(0.88)

4.02
(2.68)

−0.89
(1.40)

−2.22
(2.46)

−0.48
(1.30)

−5.18
(2.60)

0.77
(0.85)

−1.00
(0.46)

−4.00
(1.29)a

−1.17
(0.62)

0.67
(1.85)

−2.65
(0.53)a

−5.34
(1.41)a

RAVLT delayed recall −0.34
(0.48)

0.22
(0.29)

0.95
(0.88)

−0.43
(0.46)

−0.21
(0.81)

−1.08
(0.43)

−2.30
(0.86)

0.04
(0.27)

−0.35
(0.14)

−1.31
(0.40)a

−0.54
(0.19)

−1.04
(0.59)

−0.78
(0.16)a

−1.65
(0.44)a

Digit span forward −0.30
(0.46)

0.34
(0.28)

0.86
(0.86)

−0.28
(0.45)

−1.18
(0.79)

1.22
(0.41)a

−0.04
(0.83)

−0.05
(0.18)

−0.08
(0.09)

−0.18
(0.23)

−0.03
(0.12)

0.94
(0.50)

−0.13
(0.10)

−0.57
(0.26)

Digit span backward 0.24
(0.41)

0.39
(0.25)

1.36
(0.76)

−0.01
(0.39)

−0.22
(0.70)

0.76
(0.36)

−0.41
(0.73)

−0.08
(0.18)

−0.01
(0.09)

−0.15
(0.24)

−0.21
(0.13)

−0.38
(0.48)

−0.19
(0.10)

−0.63
(0.26)

Animal fluency −0.40
(0.91)

0.67
(0.56)

0.70
(1.71)

1.10
(0.90)

−0.41
(1.56)

−0.46
(0.81)

−1.34
(1.74)

0.07
(0.44)

−0.03
(0.23)

−0.85
(0.63)

−0.70
(0.31)

−0.09
(1.10)

−0.59
(0.26)

−1.62
(0.65)

TMT-A −0.05
(0.06)

0.00
(0.04)

−0.02
(0.11)

−0.00
(0.06)

−0.15
(0.10)

−0.03
(0.05)

−0.10
(0.11)

0.02
(0.03)

−0.01
(0.02)

−0.05
(0.05)

−0.05
(0.02)

0.13
(0.07)

−0.06
(0.02)a

−0.03
(0.05)

TMT-B −0.13
(0.06)

−0.02
(0.03)

−0.04
(0.11)

0.01
(0.06)

−0.12
(0.10)

−0.05
(0.05)

−0.33
(0.10)a

−0.01
(0.03)

−0.01
(0.02)

−0.11
(0.04)

−0.08
(0.02)a

−0.02
(0.07)

−0.07
(0.02)a

−0.12
(0.05)

Stroop I −0.01
(0.04)

−0.00
(0.02)

−0.02
(0.07)

0.01
(0.04)

−0.01
(0.06)

−0.00
(0.03)

−0.03
(0.07)

−0.00
(0.02)

0.00
(0.01)

−0.00
(0.02)

−0.02
(0.01)

0.03
(0.05)

−0.02
(0.01)

−0.04
(0.03)

Stroop II −0.02
(0.04)

−0.01
(0.02)

−0.08
(0.06)

−0.04
(0.04)

−0.03
(0.06)

−0.02
(0.03)

−0.08
(0.07)

0.00
(0.02)

−0.00
(0.01)

−0.03
(0.03)

−0.04
(0.01)

−0.02
(0.04)

−0.02
(0.01)

−0.05
(0.03)

Stroop III −0.01
(0.04)

−0.00
(0.03)

−0.01
(0.08)

−0.01
(0.04)

−0.21
(0.07)a

0.03
(0.04)

−0.08
(0.08)

0.00
(0.02)

−0.00
(0.01)

−0.06
(0.04)

−0.04
(0.02)

−0.01
(0.07)

−0.05
(0.02)a

−0.07
(0.04)

Abbreviations: RAVLT = Rey Auditory Verbal Learning Test; TMT = Trail-Making Test; VAT-A = Visual Association Test version A.
Values given are β (SE), corrected for age, sex, and education, as estimated by linear mixed models (reference category: A–T–N–). β baseline = association between ATN category and baseline test result. β longitudinal =
association with annual decline. Note that TMT-A, TMT-B, Stroop I, Stroop II, and Stroop III are log transformed and inversed.
a p Value remaining significant after false discovery rate correction with q set at 0.05.
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MCI sample, that found amyloid positivity was associated
with a higher risk of dementia.5 In addition, we found a higher
risk of dementia in A–T+N+. The A–T+N+ category con-
tained only 7 individuals, one of whom progressed to AD
dementia. Upon scrutinizing this patient’s chart, this diagnosis
was supported by a change in biomarker status from A– to A+
(supplemental e-Box, doi.org/10.5061/dryad.bg79cnp71).
This suggests an unusual order of pathologic events, which
has been described before.6,45 In line with the proposedmodel
of amyloid changes being among the first changes in the
cascade of events eventually leading to AD dementia, earlier
studies have also found amyloid positivity to be a strong risk
factor for clinical progression in the clinically relevant pop-
ulation of individuals with SCD.11–13,15,46–48 In addition, we
found that the effects of memory and amyloid positivity seem
additive, as individuals with a low baseline memory score and
positive amyloid were at the highest risk of dementia.

This study has important clinical implications. There is an
increasing interest in SCD as a clinically relevant construct,
because these are individuals who seek help at a memory
clinic. We demonstrated that within SCD, the ATN classifi-
cation is associated with clinical progression and cognitive
decline at a group level. Although it originally emerged as
a research framework, applying ATN to participants with
SCD presenting to a memory clinic is a first step in evaluating
the potential for translation of these criteria to clinical prac-
tice. Our results show that ATN biomarker profiles help to
identify which individuals with SCD are at risk of clinical
progression. Just as important, the ATN classification can
help to avoid misjudging SCD as a group, because most
individuals with SCD have normal biomarkers and our
results show that they are highly unlikely to show cognitive
decline over time.

This study has somemajor strengths. First, we included a large
cohort with almost 700 participants with SCD. We had
follow-up for many, which enabled us to analyze dementia as
an outcome in this initially cognitively normal sample. We
used a combination of modalities to define ATN categories,
which resulted in a robust classification. Among the potential
limitations of this study is that we found there is an important
relationship between age and biomarker abnormality. Al-
though we corrected for age in all models used, this might not
have been sufficient to eliminate this factor. Second, despite
the fact that we had a large cohort, some groups were very
small. This hampered the feasibility to investigate the true
value of each of the 8 biomarker profiles, and furthermore
illustrates that 8 categories may be too large a number for
practical use, while simultaneously not even capturing all
heterogeneity between patients. As an additional analysis, we
used the 3 clustered categories, clearly showing that the A+
categories are associated with an increased risk of cognitive
decline and dementia. Third, inherent to using the ATN
framework, we dichotomized all biomarker data. This means
we used cutoff values, which implies loss of information. As an
alternative, it would be worth considering each of the

biomarkers as a continuous variable, especially because recent
data show that there may be information in subthreshold
amyloid deposition.49

We found that participants with SCD in A+ profiles show an
increased risk of clinical progression to dementia and steeper
decline in the cognitive domains of memory, attention,
language, and executive functions compared to participants
with normal biomarkers. These findings implicate that
within SCD, the ATN classification helps to identify indi-
viduals at risk of dementia, and—maybe even more
importantly—which individuals are highly unlikely to show
progression over time.
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