Teaching NeuroImages: Retinopathy in spinocerebellar ataxia type 3

Fábio A. Nascimento, MD, Matheus G. Ferreira, MD, Naoye Shiokawa, MD, Mario T. Sato, MD, PhD, and Hélio A.G. Teive, MD, PhD

Neurology® 2020;94:e2283-e2284. doi:10.1212/WNL.000000000009484

Figure 1 Retinography, left eye

Peripapillary chorioretinal atrophy (red arrow), macular atrophy (white arrow), and extensive loss of retinal pigment epithelium in the lower retinal periphery (star).

A 17-year-old African Brazilian woman presented with a 1-year history of progressive ataxia, dysarthria, and decreased visual acuity. Family history was remarkable for multiple relatives with similar motor symptoms but no visual complaints. Examination showed upward gaze palsy, dysarthria, ataxia, and increased tone and reflexes. Fundoscopic examination and subsequent optical coherence tomography revealed bilateral atrophic maculopathy (figures 1 and 2). Genetic testing confirmed the diagnosis of spinocerebellar ataxia type 3 (SCA3) by revealing abnormal CAG repeats in the *ATXN3* gene—the pathologic allele had 68 repeats and the normal allele 14 repeats.

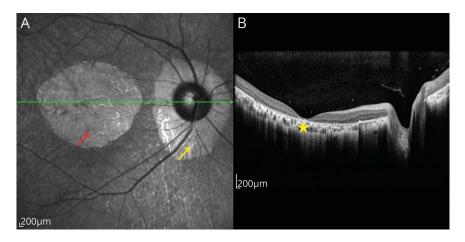
Retinopathy, a typical finding in spinocerebellar ataxia type 7,¹ has rarely been associated with SCA3.^{2–4} Further studies should elucidate this association, thereby possibly expanding the phenotypic spectrum of SCA3.

Study funding

No targeted funding reported.

Correspondence

Dr. Nascimento nascimento.fabio.a@gmail.com


MORE ONLINE

→Teaching slides links.lww.com/WNL/ B89

From the Department of Neurology (F.A.N.), Baylor College of Medicine, Houston, TX; and Division of Neurology (M.G.F., H.A.G.T.), Department of Internal Medicine, and Department of Ophthalmology (N.S., M.T.S.), Universidade Federal do Paraná, Curitiba, Brazil.

Go to Neurology.org/N for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.

Figure 2 Optical coherence tomography, right eye

(A) Near-infrared light shows macular atrophy (red arrow) and peripapillary chorioretinal atrophy (yellow arrow). (B) Complete foveal atrophy, loss of deep macular layers within the atrophic topography, and loss of peripapillary retinal pigment epithelium (star).

Disclosure

F.A. Nascimento is a member of the *Neurology*® Resident & Fellow Section Editorial Team. M.G. Ferreira, N. Shiokawa, M.T. Sato, and H.A.G. Teive report no relevant disclosures. Go to Neurology.org/N for full disclosures.

Appendix Authors

Name	Location	Contribution
Fábio A. Nascimento, MD	Baylor College of Medicine, Houston, TX	Designed study, analyzed and interpreted the data, drafted the manuscript
Matheus G. Ferreira, MD	Universidade Federal do Paraná, Curitiba, Brazil	Designed study, analyzed and interpreted the data, drafted the manuscript
Naoye Shiokawa, MD	Universidade Federal do Paraná, Curitiba, Brazil	Analyzed and interpreted the data, revised the manuscript

Appendix (continued)

Name	Location	Contribution
Mario T. Sato, MD, PhD	Universidade Federal do Paraná, Curitiba, Brazil	Analyzed and interpreted the data, revised the manuscript
Hélio A.G. Teive, MD, PhD	Universidade Federal do Paraná, Curitiba, Brazil	Designed and conceptualized study, analyzed and interpreted the data, revised the manuscript, supervised study, final approval

References

- Teive HAG, Ashizawa T. Primary and secondary ataxias. Curr Opin Neurol 2015;28: 413–422.
- Isashiki Y, Kii Y, Ohba N, Nakagawa M. Retinopathy associated with Machado-Joseph disease (spinocerebellar ataxia 3) with CAG trinucleotide repeat expansion. Am J Ophthalmol 2001;131:808–810.
- Durr A, Stevanin G, Cancel G, et al. Spinocerebellar ataxia 3 and Machado-Joseph disease: clinical, molecular, and neuropathological features. Ann Neurol 1996;39: 490–499.
- Alvarez G, Rey A, Sanchez-Dalmau FB, et al. Optical coherence tomography findings in spinocerebellar ataxia-3. Eye 2013;27:1376–1381.

Teaching NeuroImages: Retinopathy in spinocerebellar ataxia type 3

Fábio A. Nascimento, Matheus G. Ferreira, Naoye Shiokawa, et al. Neurology 2020;94;e2283-e2284 Published Online before print April 24, 2020 DOI 10.1212/WNL.0000000000009484

This information is current as of April 24, 2020

Updated Information & including high resolution figures, can be found at: **Services** http://n.neurology.org/content/94/21/e2283.full

References This article cites 4 articles, 0 of which you can access for free at:

http://n.neurology.org/content/94/21/e2283.full#ref-list-1

Subspecialty Collections This article, along with others on similar topics, appears in the

following collection(s):

Pupils

http://n.neurology.org/cgi/collection/pupils

Spinocerebellar ataxia

http://n.neurology.org/cgi/collection/spinocerebellar_ataxia

Permissions & Licensing Information about reproducing this article in parts (figures, tables) or in

its entirety can be found online at:

http://www.neurology.org/about/about_the_journal#permissions

Reprints Information about ordering reprints can be found online:

http://n.neurology.org/subscribers/advertise

Neurology ® is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright © 2020 American Academy of Neurology. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.

