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Abstract

Objective

To study the macrostructural and microstructural MRI correlates of brain astrocytosis, mea-
sured with ''C-deuterium-L-deprenyl (*'C-DED)-PET, in familial autosomal-dominant Alz-
heimer disease (ADAD).

Methods

The total sample (n = 31) comprised ADAD mutation carriers (n = 10 presymptomatic, 39.2 +
10.6 years old; n = 3 symptomatic, 55.5 + 2.0 years old) and noncarriers (n = 18, 44.0 + 13.7
years old) belonging to families with mutations in either the presenilin-1 or amyloid precursor
protein genes. All participants underwent structural and diffusion MRI and neuropsychological
assessment, and 20 participants (6 presymptomatic and 3 symptomatic mutation carriers and
11 noncarriers) also underwent ''C-DED-PET.

Results

Vertex-wise interaction analyses revealed a differential relationship between carriers and non-
carriers in the association between ''C-DED binding and estimated years to onset (EYO) and
between cortical mean diffusivity (MD) and EYO. These differences were due to higher ""C-DED
binding in presymptomatic carriers, with lower binding in symptomatic carriers compared to
noncarriers, and to lower cortical MD in presymptomatic carriers, with higher MD in symp-
tomatic carriers compared to noncarriers. Using a vertex-wise local correlation approach,
"'C-DED binding was negatively correlated with cortical MD and positively correlated with
cortical thickness.

Conclusions

Our proof-of-concept study is the first to show that microstructural and macrostructural
changes can reflect underlying neuroinflammatory mechanisms in early stages of Alzheimer
disease (AD). The findings support a role for neuroinflammation in AD pathogenesis, with
potential implications for the correct interpretation of neuroimaging biomarkers as surrogate
endpoints in clinical trials.
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Glossary

AD = Alzheimer disease; ADAD = autosomal-dominant Alzheimer disease; 'C-DED = 11C-deuterium-L-deprenyl; CTh =
cortical thickness; DTI = diffusion tensor imaging; DWI = diffusion-weighted imaging; EYO = estimated number of years to
symptom onset; FWE = family-wise error; GM = gray matter; MAO-B = monoamine oxidase-B; MD = mean diffusivity; TE =

echo time; TR = repetition time.

Alzheimer disease (AD) is a complex disorder in which mul-
tiple pathophysiologic features coexist." In a small proportion
of patients, AD is hereditary due to autosomal-dominant
mutations” with an early and rather predictable mutation-
specific age at onset, allowing the investigation of pre-
symptomatic brain changes.””

Neuroinflammation is postulated as a key player in AD
pathogenesis.*> While most PET imaging studies of neuro-
inflammation have studied microgliosis,(s’7 few PET tracers
exist for astrocytosis. The most common is ''C-deuterium-L-
deprenyl ("'C-DED), which targets monoamine oxidase-B
(MAO-B).* " Using "'C-DED-PET in a longjtudinal autosomal-
dominant AD (ADAD) cohort, we previously reported pre-
symptomatic astrocyte activation followed by decline along
disease progression.12

The complexity of AD requires multimodal approaches. Using
structural and diffusion MRI, we recently proposed a model of
gray matter (GM) changes in sporadic AD,"*™'® in which an
early presymptomatic phase of decreased cortical mean diffu-
sivity (MD) and increased cortical thickness (CTh) is followed
by increased cortical MD and decreased CTh at symptomatic
stages. Although the origin of these structural changes is unclear,
previous biological evidence suggests a role for neuronal or glial
remodeling and hypertrophy.'>”'® Whether astrocytosis has
a measurable structural correlate in AD is unknown. Identifying
structural correlates of brain inflammation is of potential utility
for clinical trial design, specifically when interpreting the
structural changes observed in immunization or in trials tar-
geting neuroinflammation. In this proof-of-concept study, we
aimed to (1) assess astrocytosis in ADAD using "'C-DED-PET;
(2) investigate microstructural and macrostructural measures in
ADAD; and (3) investigate the microstructural and macro-
structural correlates of astrocytosis in ADAD.

Methods
Study design and participants

Individuals from families with known ADAD mutations were
recruited through the Unit for Hereditary Dementias, which
provides genetic counseling at Theme Aging, Karolinska Uni-
versity Hospital (Stockholm, Sweden). The participants with
ADAD in this study are part of an ongoing prospective research
study at Karolinska Institutet that started in 1993 involving
families that carry 1 of 4 mutation types. All family members
were invited to participate, and those who accepted were in-
cluded. Recruitment was performed blind to participants’
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mutation status. Therefore, the study includes mutation car-
riers and noncarriers, all recruited and examined following
identical procedures, without known selection bias.

Symptom onset in mutation carriers is defined as the time at
which the first clinically relevant cognitive symptoms appeared,
as either experienced by the patient or noticed by near relatives.
In this cohort, the average age at onset was earliest (36 + 2
years) in PSENI Ile143Thr mutation carriers, while it was
similar in carriers of the other 3 mutations: PSEN1 His163Tyr
(52 £ 7 years), APPswe KM670/671NL (54 + S years), and
APParc Glu693Gly (56 + 3 years).'” The average age at onset
in each family was calculated from medical records for disease
onset in individuals from that family (S, 9, 24, and 12 indi-
viduals for the 4 mutation types, respectively). The estimated
number of years to symptom onset (EYO) was calculated for
each carrier or noncarrier participant by subtracting the indi-
vidual’s age from the average age at onset for the respective
family. The concept of EYO in noncarriers is artificial. We only
use it in the interaction analyses to have the participants in the
same temporal dimension.

In our study, symptomatic carriers had been clinically di-
agnosed with either mild cognitive impairment™ or AD de-
mentia.”' Presymptomatic carriers had no cognitive complaints
and did not fulfill the criteria for mild cognitive impairment or
AD dementia. Clinicians and researchers in contact with or
examining the ADAD research participants were blind to the
mutation status. Diagnoses were made during a consensus
meeting where a geriatrician/neurologist, a neuropsychologist,
and a nurse discussed the outcome of the participant
assessment.

The study included 31 participants (table 1). All available
ADAD mutation carriers who had both MRI and diffusion-
weighted imaging (DWI) data were selected. An age- and sex-
matched (to both presymptomatic and symptomatic carriers)
group of noncarriers who also had MRI and DWI data were
used as a control group for the mutation carriers. All partic-
ipants underwent a comprehensive clinical and imaging ex-
amination that included a medical history, neurologic and
psychiatric examination, EEG, MRI, APOE genotyping, and
neuropsychological assessment. Moreover, a subset of partic-
ipants (n = 20, table 2) underwent a ''C-DED PET scan. This
was acquired within 3.8 + 3.7 months of the MRI scan, except
for 2 participants: 1 presymptomatic carrier had the ''C-DED
PET scan 1.7 years before the MRI and 1 symptomatic carrier
had the scan 3.3 years after the MRI. When analyses involving
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Table 1 Demographic and clinical information for the whole sample

Noncarriers pMC sMC Total
N 18 10 3° 31
Sex, M/F 9/9 b 2/1 b
Age,y 44.0 (13.7) 39.2(10.6) 55.5(2.0) 43.6 (12.7)
Estimated years to symptom onset -7.4(10.6) -12.6 (8.1) 1.47 (4.0) -8.2(10.0)
Education, y 11.6 (2.0) 13.3(1.6) 10.3(1.2) 12.0 (2.0)
APOE €4 carriers, % 27 50 67 39
Global cognition, z score 0.20 (0.49) 0.44 (0.40) -1.06 (2.43) 0.15 (0.87)
Episodic memory, z score -0.14 (0.64) 0.04 (0.72) -1.47 (1.38) -0.21(0.83)

Abbreviations: pMC = presymptomatic mutation carriers; sMC = symptomatic mutation carriers.

Continuous data are presented as means (SD).

?Two sMC were diagnosed with mild cognitive impairment and 1 with Alzheimer disease dementia.
b Sex distribution for pMC and for the whole sample is not revealed to preserve confidentiality.

comparisons between MRI and PET imaging data were re-
peated excluding these 2 participants, the results did not change
significantly (not shown).

Standard protocol approvals, registrations,
and patient consents

All participants provided written informed consent to par-
ticipate in the study, which was conducted according to the
Declaration of Helsinki and subsequent revisions. Ethical
approval was obtained from the regional Human Ethics
Committee of Stockholm and the Faculty of Medicine and
Radiation Hazard Ethics Committee of Uppsala University
Hospital, Sweden.

MRI acquisition and processing
All participants (n = 31) underwent a structural 3D T1
magnetization-prepared rapid acquisition gradient echo

sequence and a diffusion tensor imaging (DTI) MRI sequence
in a 3T Siemens (Munich, Germany) Trio scanner. The ac-
quisition measures of T1 MRI included the following: repeti-
tion time/echo time (TR/TE) 1,780/3.42 ms, inversion time
900 ms, 192 sagittal slices, voxel size 1 x 1 x 1 mm?, and flip
angle = 9°. DTT was performed using a spin echoplanar imaging
sequence (TR/TE 8,000/97 ms, 60 axial slices, voxel size 2 x2
x2.4 mm>) with 30 orientations for the diffusion-sensitizing
gradients (b-value of 1,000 s/mm”). Further details of the
procedure can be found elsewhere.'>**

Structural MRI was preprocessed using FreeSurfer 6.0 (surfer.
nmr.mgh.harvard.edu).23 All cortical segmentations were
inspected visually to detect processing errors, which were
corrected if necessary as is customary in MRI surface-based
analyses."*"* Of the initial 33 participants, 2 (1 mutation carrier
and 1 noncarrier) had been excluded from the analysis because

Table 2 Demographic and clinical information in the PET subset

Noncarriers pMC sMC Total
N 11 6 32 20
Sex, M/F 6/5 b 21 b
Age,y 47.1(13.6) 43.4(7.8) 55.5(2.0) 47.2(11.5)
Estimated years to symptom onset -5.6(11.4) -9.6 (8.2) 1.4 (3.9) -5.8 (10.0)
Education, y 11.7 (2.0) 12.8(1.9) 10.3(1.2) 11.9(2.0)
APOE =4 carriers, % 27 50 67 40
Global cognition, z score 0.29 (0.44) 0.53(0.42) -1.06 (2.43) 0.16 (1.03)
Episodic memory, z score -0.18 (0.46) -0.27 (0.45) -1.47 (1.38) -0.40 (0.76)

Abbreviations: pMC = presymptomatic mutation carriers; sMC = symptomatic mutation carriers.

Continuous data are presented as mean (SD).

2Two sMC were diagnosed with mild cognitive impairment and 1 with Alzheimer disease dementia.
b Sex distribution for pMC and for the whole sample is not revealed to preserve confidentiality.
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of severe segmentation errors (6%), thus 31 were finally in-

cluded (table 1).

Diffusion imaging data were processed with an in-house
surface-based DTI approach,'® which uses tools from the
FSL (FMRIB Software Library) (fsl.fmrib.ox.ac.uk/fsl/
fslwiki, version 5.0.9) and FreeSurfer 6.0 packages. This
surface-based approach takes advantage of recent meth-
odologic advances®*%¢
ditional voxel-based approaches when used in analyses of the
cortical mantle. First, it reduces the contribution from CSF
and white matter signal in GM voxels that can confound the
cortical MD measures. Second, it applies a surface-based
smoothing procedure, as it has been shown that volume-
based analysis techniques may be sensitive to the across-
voxel smoothing kernel size.”” In the surface-based DTI
approach, images were motion-corrected, skull-stripped, and
diffusion tensor—fitted. The diffusion images were then
coregistered to each participant’s T1 native space using the
bbregister tool in FreeSurfer 6.0. The cortical MD maps
resulting from the DTI fitting were then sampled in the
midpoint between white and pial surfaces generated by
FreeSurfer, projected onto the participant’s cortical surface
space, and registered to the FreeSurfer standard space for
subsequent analysis.

to overcome the limitations of tra-

PET image acquisition and processing

A subset of participants (n = 20) underwent ''C-DED PET
imaging at the Uppsala PET Centre, Uppsala University,
Sweden. Briefly, 60-minute dynamic "'C.DED images were
acquired on ECAT EXACT HR+ (Siemens/CTI) and GE
(Chicago, IL) Discovery ST PET/CT scanners (mean injected
dose, 221 * 65 MBq), reconstructed, and motion
corrected.'>** All PET emission data were reconstructed with
filtered backprojection using a 4-mm Hanning filter, resulting
in a transaxial spatial resolution of S mm in the field of view.
The matrix included 128 x 128 pixels, and a zoom factor of 2.5
was used. All 19 reconstructed frames (4 x 30's, 8 X 60's, 4 X300
s,and 3 X600 s) were realigned for motion correction using the
second frame as reference, with subsequent time frames being
successively realigned to the previous one. For ''C-DED PET
quantification, a modified-reference Patlak model'*** was ap-
plied to the 20-60 minutes dynamic ''C-DED PET images
using the cerebellar GM as modified reference region to gen-
erate individual parametric Patlak slope images (units: min~"),
assuming a cerebellar GM slope of 0.01 min~". ''C-DED
binding was then expressed as the ratio of ''C-DED slope in
each brain voxel to that in the cerebellar GM.

Once "'C-DED PET binding had been calculated, 10-60
minutes averaged PET images were used to coregister the PET
volume to each participant’s native T1 using the mri_coreg tool
in FreeSurfer 6.0. Although the parametric ''C-DED images
were originally generated in native ''C-DED PET space, the
images were subsequently projected onto the cortical surface
space for direct comparison between the ''C-DED PET and
MRI data. The cortical ''C-DED binding was sampled in the
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midpoint between pial and white matter FreeSurfer surfaces as
in the diffusion analyses.

Neuropsychological assessment

Participants were assessed using a comprehensive battery of
neuropsychological tests, including memory, attention, lan-
guage, executive, and visuospatial functions.”’ Raw scores were
converted to z scores using a reference group from the Kar-
olinska University Hospital, and combined into 2 composite
scores for global cognition (9 subtests) and episodic memory
(3 subtests).*” Cronbach a was used to assess the internal
consistency of each composite score. The episodic memory
composite (Cronbach a= 0.73) was useful to capture early
impa.irment,29 while the global cognitive composite (Cronbach
a = 0.67) represented an aggregate of various nonmemory
domains.* The neuropsychological assessment was performed
within 1.0 £ 3.3 months from the date of the MRI scan.

Statistical analysis

Before any statistical data analysis of the PET and MRI, a 2D
full-width half-maximum Gaussian kernel of 20 mm across the
cortical mantle was applied to ""C-DED PET, MD, and CTh
surfaces.

To address the main objective of this study, investigating the
microstructural and macrostructural MRI correlates of
astrocytosis using ' 'C-DED PET at different stages of ADAD,
the statistical analysis was conducted in 3 steps.

In step 1, we assessed whether mutation carriers and non-
carriers had different associations with EYO for 3 imaging
modalities: ''C-DED PET, cortical MD, and CTh. To this end,
vertex-wise linear regression models were assessed in Free-
Surfer, with each imaging measure as a dependent variable and
EYO as the independent predictor. We then statistically tested
for a differential relationship of each imaging modality with
EYO between mutation carriers (n = 9 for "'C-DED PET,
n = 13 for cortical MD and CTh) and noncarriers (n = 11 for
"'C.DED PET, n = 18 for cortical MD and CTh), using sex as
covariate.

In step 2, to further investigate ""C-DED PET, cortical MD,
and CTh differences across disease stages, the mutation carriers
were stratified into presymptomatic or symptomatic, and these
2 subgroups were each compared to the noncarrier group.
Vertex-wise general linear models were assessed in FreeSurfer
with each imaging measure as a dependent variable, and age
and sex as covariates. Group comparisons were carried out
between each of the mutation carrier groups (n = 6 pre-
symptomatic and n = 3 symptomatic for ''C-DED PET,n = 10
presymptomatic and n = 3 symptomatic for cortical MD and
CTh) and the noncarrier group (n =11 for "'C-DED PET,n =
18 for cortical MD and CTh).

In step 3, we investigated the local association between
"'C-DED binding and cortical microstructural and macro-
structural MRI measures using vertex-wise correlation
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analyses between ''C-DED binding and cortical MD, and
between ''C-DED binding and CTh, in FreeSurfer. These
associations were tested for the mutation carrier group alone

(n=9).

All the vertex-wise analyses described above were corrected
for multiple comparisons within FreeSurfer by using a cluster
extension criterion in a Monte Carlo simulation with 10,000
repeats, with the family-wise error (FWE) correction settled
at p < 0.05. Only clusters that survived the multiple-
comparisons correction are shown. For each analysis, all sig-
nificant clusters were isolated, averaged, and plotted in scat-
terplots or box-and-whisker plots for illustrative purposes.

Group analyses for continuous nonimaging variables (de-
mographic, clinical, and neuropsychological variables) were
performed using analysis of variance with Tukey post hoc
corrections or Kruskal-Wallis tests, as appropriate. The y” test
was applied for categorical variables. Statistical analyses were
performed using R statistical software (r-project.org).

Data availability

Anonymized data will be shared by request from any qualified
investigator for the sole purpose of replicating procedures and
results presented in the report provided that data transfer is in
agreement with EU legislation on the general data protection
regulation.

Results

Demographic and clinical data are summarized in table 1 for the
whole cohort (n = 31) and in table 2 for the subset of partic-
ipants with ''C-DED PET image data (n = 20). There were no
significant differences in age, proportion of mutation carriers,
or proportion of symptomatic carriers between the whole co-
hort and the PET subset. There were no significant differences
in age between noncarriers and presymptomatic or symp-
tomatic carriers in the whole sample (table 1) or in the PET
subset (table 2). There were no significant differences in the
proportion of APOE &4 allele carriers between groups in the
whole cohort and in the PET subset. Sex information for the
presymptomatic carriers and the whole cohort, as well as in-
dividual family membership of the data points in the figures, are
not revealed for confidentiality reasons.

Neuropsychological profiles

In the whole cohort (table 1), the presymptomatic carrier group
did not differ significantly in global cognition or episodic memory
from the noncarrier group. Symptomatic carriers had the lowest
scores for global cognition (z = —1.06 + 2.43) and episodic
memory (z = —1.47 + 1.38) of all groups. They had significantly
poorer episodic memory scores than noncarriers (Mann-
Whitney Z = —2.11, p = 0.035); however, the difference in
global cognition between symptomatic carriers and noncarriers
was not statistically significant. Similarly, in the subset of partic-
ipants with PET imaging data (table 2), presymptomatic carriers
did not significantly differ in either global cognition or episodic
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memory from the noncarriers. Symptomatic carriers tended to
have lower episodic memory scores than noncarriers (Mann-
Whitney Z = —1.95, p = 0.052), while the respective comparison
for global cognition did not reach statistical significance.

"C-DED binding in mutation carriers

Figure 1 shows the results of the linear regression models used
to investigate the association between ''C-DED binding and
EYO in mutation carriers and noncarriers. Figure 1A illustrates
the clusters representing a significant differential relationship
between ''C-DED binding and EYO depending on the mu-
tation status (carrier/noncarrier) in the PET subset (n = 20).
Significant clusters (FWE-corrected, p < 0.05) emerged mostly
within bilateral temporal and frontal regions (figure 1A). For
illustrative purposes, the average of all significant clusters was
plotted separately for mutation carriers and noncarriers (figure
1B); coordinates of all significant clusters are available in table
e-1 (doi.org/10.5061/dryad.585581j). "'C-DED binding was
negatively associated with EYO in carriers while no significant
association was observed in noncarriers. The vertex-wise whole
brain group comparison of ""C-DED binding between pre-
symptomatic carriers and noncarriers showed a pattern of in-
creased ''C-DED binding in the presymptomatic carriers over
clusters involving precentral, parietal, and precuneus regions
(figure 2A; FWE-corrected, p < 0.05). For illustrative purposes,
the comparison between presymptomatic carriers and non-
carriers within the average of all significant clusters is shown by
a box-and-whisker plot (figure 2B); coordinates of all signifi-
cant clusters are available in table e-2 (doi.org/10.5061/dryad.
585581j). In contrast, ''C-DED binding appeared to be similar
or even decreased for the symptomatic carriers vs the non-
carriers (ﬁgure e-1 and table e-3, doi.org/10.5061/dryad.
585581j).

Cortical microstructural and macrostructural
measures in mutation carriers

Figure 3 shows the results of the linear regression models used
to investigate the association between cortical MD and EYO in
mutation carriers and noncarriers. Figure 3A illustrates the
clusters representing a significant differential relationship be-
tween MD and EYO depending on the mutation status
(carrier/noncarrier) in the whole cohort (n = 31). The sig-
nificant clusters (FWE-corrected, p < 0.05) in figure 3A show
a widespread bilateral cortical pattern, including temporo-
parietal, precuneus, posterior and anterior cingulate, and frontal
regions. For illustrative purposes, the average of all significant
clusters was plotted against EYO for mutation carriers and
noncarriers separately (ﬁgure 3B). In mutation carriers, a pat-
tern of increasing MD with disease progression (as measured
by EYO) was observed, while no change in relation to EYO was
seen in noncarriers. No result survived multiple comparisons
when comparing the relationship of CTh with EYO between
carriers and noncarriers (not shown).

Cortical MD was reduced in presymptomatic mutation
carriers compared to noncarriers in clusters including pari-
etal, frontal, temporal, and occipital regions (figure 4A).
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Figure 1 Differential relationship between estimated number of years to symptom onset (EYO) and "'C-deuterium-L-
deprenyl ("'"C-DED) PET binding in mutation carriers (MC) vs noncarriers (NC)
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(A) Surface map represents clusters of significant differential relationship between "' C-DED PET binding and EYO depending on the mutation status (MC/NC).
Only clusters surviving multiple-comparison correction are depicted (family-wise error [FWE]-corrected, p < 0.05); coordinates of all significant clusters are
available in table e-1 (doi.org/10.5061/dryad.585581j). (B) Linear regression trajectories of "' C-DED PET binding averaged over the left hemisphere (LH) vs EYO
in MC (red) and NC (blue), including 95% confidence bands around the model predictions (illustrative purposes). RH = right hemisphere.

Figure 4B shows the average MD within all significant
clusters in a box-and-whisker plot between presymptomatic
carriers and noncarriers. On the other hand, cortical MD was
increased over widespread clusters including bilateral
temporo-parietal, cingulate, and frontal regions in symp-
tomatic carriers vs noncarriers (ﬁgure 4C). Figure 4D shows
the average MD within all significant clusters in a box-and-
whisker plot between symptomatic carriers and noncarriers.
Finally, there were subtle increases in CTh in pre-
symptomatic carriers at the uncorrected level, and decreases
in CTh in symptomatic carriers (figure e-2, doi.org/10.
5061/dryad.585581j).

These analyses were repeated including APOE &4 allele status
(carrier vs noncarrier) as a covariate and the results did not
change.

Microstructural and macrostructural MRI
correlates of 'C-DED binding

A vertex-wise map-to-map correlation analysis was carried out
to assess the local association between ''C-DED binding and
brain microstructure and macrostructure within the mutation
carriers who had data on all imaging biomarkers (n = 9) (figure
S). Higher levels of "'"C-DED binding were related to lower
cortical MD in temporo-parietal regions (figure SA, FWE-

Figure 2 Group comparison of ''C-deuterium-L-deprenyl ('"'C-DED) PET binding in presymptomatic mutation carriers

(pMC) vs noncarriers (NC)

1.54

1.4 4

1.3 1

"C-DED binding

1.2 4

1:0 4

p value

(A) Surface map represents clusters of increased
(in red-yellow) "C-DED PET binding in pMC
compared to NC; only clusters surviving multiple-
comparison correction are depicted (family-wise
error [FWE]-corrected, p < 0.05); coordinates of
‘ all significant clusters are available in table e-2
(doi.org/10.5061/dryad.585581j). (B) Box-and-
whisker plot compares the average ''C-DED

. binding over the left hemisphere (LH) between

0.05 0.05

' pMC (red) and NC (blue) (illustrative purposes).
NC pMC RH = right hemisphere.
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Figure 3 Differential relationship between estimated number of years to symptom onset (EYO) and cortical mean diffu-
sivity (MD) in mutation carriers (MC) and noncarriers (NC)
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(A) Surface map represents clusters of significant differential relationship between cortical MD and EYO depending on the mutation status (MC/NC). Only
clusters surviving multiple-comparison correction are depicted (family-wise error [FWE]-corrected, p < 0.05); coordinates of all significant clusters are
available in table e-4 (doi.org/10.5061/dryad.585581j). (B) Linear regression trajectories of cortical MD averaged over the left hemisphere (LH) vs EYO in MC
(red) and in NC (blue), including 95% confidence bands around the model predictions (illustrative purposes). RH = right hemisphere.

corrected, p < 0.05) and to increased CTh (figure SC). The
average of all significant clusters illustrating these significant
associations between ''C-DED binding and cortical MD and
CTh is plotted in figure S, B and D, respectively.

Discussion

In this study, we investigated the structural MRI correlates of
brain astrocytosis as measured by "' C-DED PET in patients in
early presymptomatic stages of ADAD. We report that e
DED binding has a measurable structural correlate in the form
of decreased cortical MD and increased CTh in ADAD.

We first assessed ' 'C-DED binding in ADAD. Our results, using
a surface-based approach, confirmed previously published
results in the same cohort using regional and voxel-wise
approaches'” in which 'C-DED binding peaked in early pre-
symptomatic ADAD and then decreased with EYO toward the
symptomatic stage. This result suggests that ''C-DED PET can
track the inflammatory processes that occur in the early phases
of the disease and highlights the role of neuroinflammation in
AD pathogenesis. Preclinical studies have shown that astrocytes
contribute to the clearance of B-amyloid species.*>*" The ex-
posure of astrocytes to soluble -amyloid species was reported
to promote astrocytic MAO-B upregulation,® which may ex-
plain the observed high "'C-DED binding in presymptomatic
ADAD. In contrast, at late disease stages there is preclinical
evidence for astrocytic dysfunction and atrophy observed in
aged transgenic mouse brains.'” In our study, the observed
decline in "' C-DED binding toward the symptomatic stage may
thus be a sign of astrocyte cell loss or of progressive changes in
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the astrocyte phenotype indicating loss of function. Importantly,
similarly to previous works,'> we observed a diffuse pattern of
increased ''C-DED binding involving parietal and precuneus
areas. These areas are susceptible to amyloid deposition but are
relatively spared of tau deposition at early disease stages. Our
results thus suggest that increased CTh (and reduced MD) are
related to inflammation in early preclinical stages whereas re-
duced CTh (and increased MD) are more closely related to tau
aggregation, which drives local neurodegeneration in later pre-
clinical and prodromal AD stages.*

Only 2 previous studies have reported cortical MD decreases
in presymptomatic ADAD. Fortea and collaborators>* found
decreased cortical MD in a group of presymptomatic PSEN1
carriers. These findings were later replicated in a separate
cohort reported by Ryan and collaborators,® who found
decreased MD in asymptomatic carriers in subcortical struc-
tures, and increased MD in symptomatic carriers. The CTh
results in our presymptomatic group, although only at trend
level, also agree with previous studies reporting increases in
CTh or volume in presymptomatic ADAD.***%%” Overall, our
results are in agreement with previous studies that have
assessed brain microstructure and macrostructure in
ADAD.>**° In preclinical sporadic AD, nonlinear trajectories
have been described for MD and CTh.'*'* This nonlinear
trajectory would be the result of the transition from an
amyloid-negative healthy stage to an amyloid-positive pre-
clinical and then clinical disease stage. However, data sup-
porting nonlinear trajectories in ADAD are less clear,**
suggesting that participants harboring a mutation present
abnormal increases in CTh from very early ages.”” Given
these previous reports in ADAD and the small sample size of
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Figure 4 Group comparisons of cortical mean diffusivity
(MD) in presymptomatic mutation carriers (pMC)
and symptomatic mutation carriers (sMC) vs
noncarriers (NC)
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(A) Surface map represents clusters of reduced (in blue) cortical MD in pMC
compared to NC; only clusters surviving multiple-comparison correction are
depicted (family-wise error [FWE]-corrected, p < 0.05); coordinates of all
significant clusters are available in table e-5 (doi.org/10.5061/dryad.
585581j). (B) Box-and-whisker plot compares the average cortical MD within
the left hemisphere between pMC (red) and NC (blue) (illustrative purposes).
(C) Surface map represents clusters of increased (in red) cortical MD in sMC
compared to NC; only clusters surviving multiple-comparison correction are
depicted (FWE-corrected, p < 0.05); coordinates of all significant clusters are
available in table e-5. (D) Box-and-whisker plot compares the average MD
within the left hemisphere (LH) between sMC (red) and NC (blue) (illustrative
purposes). RH = right hemisphere.

our study, we were restricted to testing linear models, but
future studies with larger cohorts are warranted to test more
complex nonlinear trajectories.

The main finding of our study was the significant map-to-map
local association between ''C-DED binding and cortical mi-
crostructure and macrostructure in ADAD. This is the first time
that evidence of the structural impact of brain astrocytosis as
measured by ''C-DED binding has been reported in ADAD.
Interestingly, ''C-DED binding had a negative association with
MD, but a positive association with CTh. This finding is con-
sistent with the divergent behavior of MD and CTh measures
as previously reported in sporadic AD and in frontotemporal
dementia,">*® where increased CTh was related to decreased
MD, while atrophy co-occurs with increased MD. The novelty
of the present study is that, although MD and CTh have di-
vergent directions, they are both topographic biomarkers
whereby decreased MD and increased CTh both reflect

Neurology.org/N

a common underlying neuroinflammatory process as measured

by ''C-DED binding.

Our results are biologically plausible. Neuroinflammation has
been postulated as central to AD pathogenesis,” and the ele-
vated ''C-DED binding in presymptomatic carriers was
expected, as previously published.12 In this presymptomatic
stage, the inflammatory process would produce changes in cell
phenotype including increased cell volume (neuronal or glial
swelling) and cell number (glial recruitment and activation)
that could explain the decrease in cortical MD.'® Indeed, it has
been reported that changes in cell volume or glial activation can
alter the microstructural properties of brain tissue.*” Studies
conducted by us and others that have found decreases in dif-
fusivity in presymptomatic ADAD>*** have interpreted the
results using the same biological rationale. Recent advances in
PET technology have allowed this hypothesis, which was
driven by animal studies and pathologic data, to be now tested
in vivo. Consonant with our main hypothesis, our ''C-DED
binding results favor the interpretation that astrocyte reactivity
may underlie the observed local structural changes in pre-
symptomatic carriers.

In symptomatic carriers, the observed increase in cortical MD
was consistent with our previous study in the symptomatic
stage of sporadic AD." In this stage, loss of tissue integrity
and breakdown of cell membranes and intracellular organelles
would result in water molecules moving more easily, and thus
in increased diffusivity.*’

Interestingly, not all brain areas that showed astrocytosis pre-
sented decreased cortical MD, and vice versa. Several factors
might account for this mismatch. First, only clusters surviving
multiple comparisons are shown. The uncorrected map-to-map
correlations between structural measures and ' C-DED binding
showed increased spatial concordance between those measures
(not shown). Second, although our study shows that both
phenomena co-occur, other pathophysiologic factors apart from
astrocytosis, such as microgliosis,”*' neuronal hypertrophy, and
changes in cell membrane permeability, could account for
cortical MD changes.lg’42 In addition, in this study we only
measured one marker of astrocytosis (‘' C-DED binding), and
therefore we cannot exclude that other local processes measured
using alternative markers of astrocytosis or microgliosis”*' may
contribute to MD changes in any given region.

The results of this study have several implications. First, it is
evident from our diftusivity results and previous studies by us
and others in patients with sporadic AD that cortical MD is
decreased in early preclinical stages.">** This finding is fol-
lowed by widespread increases in cortical MD once the disease
advances to the symptomatic stage.***> A neuroinflammatory
mechanism common to both sporadic and familial AD may
underlie these similar patterns of cortical microstructural and
macrostructural changes, reinforcing the role of neuro-
inflammation in disease pathogenesis. Second, we have shown
that brain inflammation has a structural correlate and, more
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Figure 5 Local associations between ''C-deuterium-L-deprenyl (*'C-DED) PET binding and cortical microstructure and
macrostructure in mutation carriers
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(A) Surface map represents clusters of significant vertex-wise negative correlations (in blue) between astrocytosis as measured by ''C-DED PET binding and
cortical mean diffusivity (MD). Only clusters surviving multiple-comparison correction are depicted (family-wise error [FWE]-corrected, p <0.05); coordinates
of all significant clusters are available in table e-6 (doi.org/10.5061/dryad.585581j). (B) Linear regression of cortical MD (vertical axis) vs ""C-DED PET binding
(horizontal axis) averaged within the left hemisphere (LH), including a 95% confidence band around the model prediction (illustrative purposes). (C) Surface
map represents clusters of significant vertex-wise correlations between astrocytosis as measured by ''C-DED PET binding and cortical thickness (CTh). Only
clusters surviving multiple-comparison correction are depicted (FWE-corrected, p < 0.05); coordinates of all significant clusters are available in table e-6. (D)
Linear regression of CTh (vertical axis) vs ''C-DED PET binding (horizontal axis) evaluated within the LH, including a 95% confidence band around the model
prediction (illustrative purposes). RH = right hemisphere.

importantly, that these brain changes can be measured when  cortical microstructure biomarkers are more sensitive than
analyzing both the diffusion properties of brain tissue and its ~ macrostructure. In this regard, we recently reported that cor-
CTh. The fact that cortical MD is related to brain astrocytosis  tical MD is more sensitive than CTh to detect neurodegener-
reinforces the value of assessing the microstructural properties  ative processes in frontotemporal dementia®® and sporadic AD
5% and further researchis  (in preparation). In addition, this study could affect the in-
warranted to investigate the potential utility of cortical MD as  terpretation of MRI biomarkers as surrogate markers in clinical
an early biomarker. A third important implication involves  trials. What kind of biomarker changes would be expected in
clinical trial design. Inflammation biomarkers are of interest in trials aimed at reducing glial activation and neuroinflammation?
clinical trials, for patient stratification and to track biological  If our interpretation is correct and brain inflammation produces
effects of drugs.* In this respect, our results using ''C-DED  cortical thickening and decreased cortical diffusivity, a drug that
PET and recent studies emphasizing the role of astrocyte  effectively decreases brain inflammation could produce the
biomarkers in AD***” motivate further research on the use of  opposite effect: it would contribute to cortical thinning and
astrocyte PET biomarkers in clinical trials. Our results also  increased diffusivity with respect to the pretreatment state. This
showed that both MD and CTh are topographic biomarkers  counterintuitive effect would support the notion that
secondary to neuroinflammatory processes as measured by  brain shrinkage after immunotherapy in active (AN1792)**
"'C-DED PET, supporting the potential added value of MD  and passive (solanezumab* and bapineuzumab*’) immuniza-
and CTh as AD biomarkers. The fact that the CTh results were ~ tion trials was caused directly or indirectly by reducing
less prominent than the cortical MD results may indicate that  inflammation.

of the tissue, as suggested previously,
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The strengths of this study include its multimodal imaging
approach and the accurate surface-based method, which
were chosen to overcome processing limitations high-
lighted in the literature.'> More fundamentally, the unique
cohort and multimodal MRI-PET data in this study provide
valuable insights into the structural correlates of neuro-
inflammation in ADAD. The study has some limitations.
First, the number of participants included is small and the
results should be interpreted with caution and as a pre-
liminary, proof-of-concept study. Nevertheless, we em-
phasize the rarity of the condition, the uniqueness of this
sample with ''C-DED PET, the unicentric nature of this
cohort, and that only results that survived multiple com-
parisons are presented. Second, diffusion MRI is particu-
larly susceptible to field artifacts. The lack of gradient field
maps did not allow us to perform a physics-based correc-
tion of echoplanar imaging distortion. Finally, although
cortical MD and astrocytosis are related, given the cross-
sectional design of the study, we could not infer causality
with the presented data. Only longitudinal studies with
long follow-up can establish the sequence of events that
take place in AD.

This study shows that astrocytosis is an early event in familial
AD that peaks during the presymptomatic stage. Importantly,
this presymptomatic astrocytosis has a structural brain correlate
that is measurable as decreased cortical MD and increased
cortical thickness. Changes in brain astrocytosis, microstruc-
ture, and macrostructure occur simultaneously as the disease
progresses, leading to decreased astrocyte activation in the
symptomatic phase of the disease as diffusivity increases and
the cortex thins. These results should be considered in clinical
trials so that neuroimaging biomarkers can be interpreted
correctly when used as outcome measures, and also when
modeling predicted outcomes in response to treatment.
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