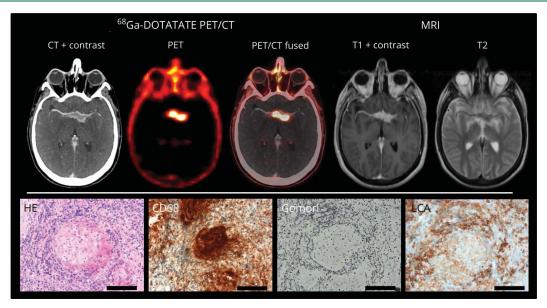
Teaching NeuroImages: Advanced imaging of neurosarcoidosis with ⁶⁸Ga-DOTATATE PET/CT


Marcus Unterrainer, MD, Viktoria Ruf, MD, Harun Ilhan, MD, Franziska Vettermann, MD, Adrien Holzgreve, MD, Clemens C. Cyran, MD, Joerg-Christian Tonn, MD, Peter Bartenstein, MD, and Nathalie L. Albert, MD

Neurology® 2019;92:e2512-e2513. doi:10.1212/WNL.000000000007544

Correspondence

Dr. Albert nathalie.albert@ med.uni-muenchen.de

Figure ⁶⁸Ga-DOTATATE PET/CT, MRI, and histology

MRI: Contrast-enhancing lesion in the cavernous sinus with perifocal edema and contact to the chiasm and the blood vessels. ⁶⁸Ga-DOTATATE PET/CT: high ⁶⁸Ga-DOTATATE uptake. Hematoxylin & eosin staining: noncaseating epithelioid granulomas. CD68 staining: tightly packed epitheloid macrophages. Gomori staining: incipient perigranulomatous fibrosis surrounded by leukocyte common antigen (LCA)–positive lymphocytes (magnification ×20, bars 100 µm).

A 45-year-old man presented with increasing visual impairment. MRI showed a nonspecific lesion at the cavernous sinus; an additional ⁶⁸Ga-DOTATATE PET/CT showed an extraordinarily high ⁶⁸Ga-DOTATATE uptake of the lesion (figure). Stereotactic brain biopsy was performed and revealed an initial manifestation of neurosarcoidosis. ⁶⁸Ga-DOTATATE targets the somatostatin receptor (SSR), which is expressed by tumor cells in malignancies such as neuroendocrine tumors and meningioma, but also by activated macrophages, ¹ as present in neurosarcoidosis. Targeted radionuclide therapies using SSR ligands labeled with beta-emitting isotopes might offer additional therapeutic options in patients with treatment-refractory neurosarcodosis, ² as also effectively applied in SSR-positive malignancies.

Author contributions

Dr. Unterrainer: study design, data collection, drafting and revising the manuscript. Dr. Ruf: acquisition and analysis of histopathology, revision of manuscript. Dr. Ilhan: analysis of PET/CT scan, revision of manuscript. Dr. Vettermann: analysis of PET/CT scan, revision of

MORE ONLINE

→Teaching slides

links.lww.com/WNL/ A889

From the Departments of Nuclear Medicine (M.U., H.I., F.V., A.H., P.B., N.L.A.), Neurosurgery (A.H., J.-C.T.), and Radiology (C.C.C.), University Hospital, and Department of Neuropathology (V.R.), LMU Munich; German Cancer Consortium (DKTK) (M.U., J.-C.T., P.B., N.L.A.), Partner Site Munich; and German Cancer Research Center (DKFZ) (M.U., J.-C.T., P.B., N.L.A.), Heidelberg, Germany.

Go to Neurology.org/N for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.

manuscript. Dr. Holzgreve: study design, data collection, revision of manuscript. Dr. Cyran: analysis of PET/CT and MRI scans, revision of manuscript. Dr. Tonn: data collection, revision of manuscript. Dr. Bartenstein: study supervision and analysis of PET scans, revision of manuscript. Dr. Albert: study design, data collection, drafting and revision of manuscript.

Study funding

No targeted funding reported.

Disclosure

The authors report no disclosures relevant to the manuscript. Go to Neurology.org/N for full disclosures.

References

- Armani C, Catalani E, Balbarini A, Bagnoli P, Cervia D. Expression, pharmacology, and functional role of somatostatin receptor subtypes 1 and 2 in human macrophages. J Leukoc Biol 2007;81:845–855.
- Lapa C, Kircher M, Hänscheid H, et al. Peptide receptor radionuclide therapy as a new tool in treatment-refractory sarcoidosis: initial experience in two patients. Theranostics 2018;8:644.

Teaching NeuroImages: Advanced imaging of neurosarcoidosis with ⁶⁸ Ga-DOTATATE PET/CT

Marcus Unterrainer, Viktoria Ruf, Harun Ilhan, et al. *Neurology* 2019;92;e2512-e2513 DOI 10.1212/WNL.0000000000007544

This information is current as of May 20, 2019

Updated Information & including high resolution figures, can be found at:

Services http://n.neurology.org/content/92/21/e2512.full

References This article cites 2 articles, 0 of which you can access for free at:

http://n.neurology.org/content/92/21/e2512.full#ref-list-1

Subspecialty Collections This article, along with others on similar topics, appears in the

following collection(s): **All Immunology**

http://n.neurology.org/cgi/collection/all_immunology

All Infections

http://n.neurology.org/cgi/collection/all_infections

CT

http://n.neurology.org/cgi/collection/ct

MRI

http://n.neurology.org/cgi/collection/mri

PET

http://n.neurology.org/cgi/collection/pet

Permissions & Licensing Information about reproducing this article in parts (figures, tables) or in

its entirety can be found online at:

http://www.neurology.org/about/about_the_journal#permissions

Reprints Information about ordering reprints can be found online:

http://n.neurology.org/subscribers/advertise

Neurology ® is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright © 2019 American Academy of Neurology. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.

