DTI of tuber and perituberal tissue can predict epileptogenicity in tuberous sclerosis complex
Citation Manager Formats
Make Comment
See Comments
This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.
Abstract
Objective: To evaluate whether diffusion tensor imaging (DTI) can predict epileptogenic tubers by measuring apparent diffusion coefficient (ADC), fractional anisotropy, axial diffusivity, and radial diffusivity in both tubers and perituberal tissue in pediatric patients with tuberous sclerosis complex (TSC) undergoing epilepsy surgery.
Methods: We retrospectively selected 23 consecutive patients (aged 0.4–19.6 years, mean age of 5.2; 13 female, 10 male) who underwent presurgical DTI and subsequent surgical resection between 2004 and 2013 from the University of California–Los Angeles TSC Clinic. We evaluated presurgical examinations including video-EEG, brain MRI, 18F-fluorodeoxyglucose–PET, magnetic source imaging, and intraoperative electrocorticography for determining epileptogenic tubers. A total of 545 tubers, 33 epileptogenic and 512 nonepileptogenic, were identified. Two observers generated the regions of interest (ROIs) of tubers (ROItuber), the 4-mm-thick ring-shaped ROIs surrounding the tubers (ROIperituber), and the combined ROIs (ROItuber+perituber) in consensus and calculated maximum, minimum, mean, and median values of each DTI measure in each ROI for all tubers.
Results: The Mann–Whitney U test demonstrated that the epileptogenic group showed higher maximum ADC and radial diffusivity values in all ROIs, and that maximum ADC in ROItuber+perituber showed the strongest difference (p = 0.001). Receiver operating characteristic analysis demonstrated that maximum ADC measurements in ROItuber+perituber (area under curve = 0.68 ± 0.05, p < 0.001) had 81% sensitivity and 44% specificity for correctly identifying epileptogenic tubers with a cutoff value of 1.32 μm2/ms.
Conclusions: DTI analysis of tubers and perituberal tissue may help to identify epileptogenic tubers in presurgical patients with TSC more easily and effectively than current invasive methods.
GLOSSARY
- AD=
- axial diffusivity;
- ADC=
- apparent diffusion coefficient;
- DTI=
- diffusion tensor imaging;
- FA=
- fractional anisotropy;
- FDG-PET=
- 18F-fluorodeoxyglucose–PET;
- RD=
- radial diffusivity;
- ROC=
- receiver operating characteristic;
- ROI=
- region of interest;
- TSC=
- tuberous sclerosis complex;
- UCLA=
- University of California–Los Angeles
Footnotes
Go to Neurology.org for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.
Supplemental data at Neurology.org
- Received April 7, 2015.
- Accepted in final form August 17, 2015.
- © 2015 American Academy of Neurology
AAN Members
We have changed the login procedure to improve access between AAN.com and the Neurology journals. If you are experiencing issues, please log out of AAN.com and clear history and cookies. (For instructions by browser, please click the instruction pages below). After clearing, choose preferred Journal and select login for AAN Members. You will be redirected to a login page where you can log in with your AAN ID number and password. When you are returned to the Journal, your name should appear at the top right of the page.
AAN Non-Member Subscribers
Purchase access
For assistance, please contact:
AAN Members (800) 879-1960 or (612) 928-6000 (International)
Non-AAN Member subscribers (800) 638-3030 or (301) 223-2300 option 3, select 1 (international)
Sign Up
Information on how to subscribe to Neurology and Neurology: Clinical Practice can be found here
Purchase
Individual access to articles is available through the Add to Cart option on the article page. Access for 1 day (from the computer you are currently using) is US$ 39.00. Pay-per-view content is for the use of the payee only, and content may not be further distributed by print or electronic means. The payee may view, download, and/or print the article for his/her personal, scholarly, research, and educational use. Distributing copies (electronic or otherwise) of the article is not allowed.
Letters: Rapid online correspondence
REQUIREMENTS
You must ensure that your Disclosures have been updated within the previous six months. Please go to our Submission Site to add or update your Disclosure information.
Your co-authors must send a completed Publishing Agreement Form to Neurology Staff (not necessary for the lead/corresponding author as the form below will suffice) before you upload your comment.
If you are responding to a comment that was written about an article you originally authored:
You (and co-authors) do not need to fill out forms or check disclosures as author forms are still valid
and apply to letter.
Submission specifications:
- Submissions must be < 200 words with < 5 references. Reference 1 must be the article on which you are commenting.
- Submissions should not have more than 5 authors. (Exception: original author replies can include all original authors of the article)
- Submit only on articles published within 6 months of issue date.
- Do not be redundant. Read any comments already posted on the article prior to submission.
- Submitted comments are subject to editing and editor review prior to posting.
You May Also be Interested in
Dr. Dennis Bourdette and Dr. Lindsey Wooliscroft
► Watch
Alert Me
Recommended articles
-
Article
White matter abnormalities in the corpus callosum with cognitive impairment in Parkinson diseaseIan O. Bledsoe, Glenn T. Stebbins, Doug Merkitch et al.Neurology, November 14, 2018 -
Articles
Everolimus alters white matter diffusion in tuberous sclerosis complexJan-Mendelt Tillema, James L. Leach, Darcy A. Krueger et al.Neurology, January 18, 2012 -
Articles
A prospective diffusion tensor imaging study in mild traumatic brain injuryA. R. Mayer, J. Ling, M. V. Mannell et al.Neurology, January 20, 2010 -
Article
Histopathology of diffusion imaging abnormalities in cerebral amyloid angiopathySusanne J. van Veluw, Yael D. Reijmer, Andre J. van der Kouwe et al.Neurology, January 30, 2019