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ABSTRACT

Energy production for the maintenance of brain function fails rapidly with the onset of ischemia
and is reinstituted with timely reperfusion. The key bioenergetic organelle, the mitochondrion, is
strongly affected by a cascade of events occurring with ischemia and reperfusion. Enhanced
production of reactive oxygen species, disruption of calcium homeostasis, and an inflammatory
response are induced by reperfusion and have a profound effect on cellular bioenergetics in re-
versible stroke. The impact of perturbed bioenergetics on cellular homeostasis/function during
and after ischemia are discussed. Because mitochondrial function can be compromised by de-
rangements at more than one of the susceptible sites on this organelle, we propose that a combi-
nation therapy is needed for the restoration and maintenance of cellular bioenergetics after
reperfusion. Neurology® 2012;79 (Suppl 1):S44–S51

GLOSSARY
ATP � adenosine triphosphate; DAMP � danger-associated molecular pattern molecule; MPTP � mitochondrial permeability
transition pore; ROS � reactive oxygen species; SAINT � Stroke-Acute Ischemic NXY Treatment; SEF � secondary energy
failure; STAIR � Stroke Therapy Academic Industry Roundtable; TNF� � tumor necrosis factor-�.

Stroke is a complex and dynamic disease of the brain that rates fourth in mortality and first in
disability in the United States. The brain has certain unique physiologic properties that make it
extremely sensitive to the loss of blood flow. In general, the energy demands of the brain are
high, requiring a continual supply of oxygen and its principal substrate, glucose, mainly from
the blood. Occluding blood flow to the brain disrupts the delicate balance between the energy
generated by glucose oxidation and energy needed for cell processes, which leads to a rapid loss
of function and cell homeostasis.

The imbalance of the brain bioenergetics induced by the loss of blood flow has been shown
to lead to cellular infarction of all brain cells, including neurons, astrocytes, endothelial cells,
oligodendrocytes, and subpopulations of these cells. Conversely, a pronounced deranged cellu-
lar milieu resulting from ischemia elicits a plethora of reactions upon re-establishment of
reflow. It is increasingly evident that many of the events center on the neurovascular unit, a
functional composite of microvessels, pericytes, astrocytes, neurons, axons, and other support-
ing cells such as microglia and oligodendrocytes. Although many of the reflow-induced events
may be pathologic and their prevention potentially beneficial, it is our contention that the
status of cellular bioenergetics is the major determinant of many of the pathophysiologic
sequelae manifested in the neurovascular unit and therefore is fundamental to the outcome for
the tissue, following reversible focal ischemia.

In the past 50 years, basic science investigations first established that loss of blood flow to the
brain resulted in rapid failure of cell bioenergetics, followed by an ever-increasing list of cellular
perturbations. A schematic of ischemia-induced events is shown in figure 1. Rapid energy
depletion reflects very low energy reserves within the brain, a high metabolic rate, and almost a
total reliance on glucose oxidation for energy production. The ischemic cascade is initiated during
ischemia. Ischemia depletes adenosine triphosphate (ATP) within minutes, leading to a failure of a
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multitude of energy-dependent cellular pro-
cesses critical to cellular homeostasis and brain
function.1–3 Parenthetically, most physiologic
processes within the cell are either directly or in-
directly impacted by the loss of energy. The im-
mediate consequence of diminished energy
reserves is perturbation of membrane electro-
chemical gradients, leading to depolarization.
The influx of sodium, calcium, and chloride
into the intracellular space and potassium efflux
result in increased intracellular water and cyto-
toxic brain edema.4 Depolarization increases in-
tracellular calcium, activating transcription
factors, phospholipases, endonucleases, and pro-
teases and leading to deranged intracellular sig-
naling, compromised cellular function, and loss
of structural integrity.5 Depolarization also trig-
gers excessive release of glutamate, which results
in an increased activation of glutamate receptors
and an additional influx of calcium, accentuat-
ing cellular injury.6 The cascade of ischemic
events disrupts cellular homeostasis, and if not
reversed, it causes tissue necrosis. If reflow is ini-
tiated in a timely fashion, however, tissue recov-
ers. Early reperfusion with thrombolytics is the
only US Food and Drug Administration–ap-
proved treatment for ischemic stroke.7,8 The du-

ration of ischemia is a major determinant of the
magnitude of the pathophysiologic response,
and time of the ischemic episode cannot be
overemphasized when discussing the outcome
following stroke.

Restoring blood flow to the brain elicited
multiple cellular and physiologic events, and
it was initially expected that reperfusion
would simply be a reversal of the ischemia-
induced disruption of the cellular milieu to
re-establish function; however, this clearly is
not the case. Experimental evidence shows
that reperfusion triggers a set of unique, po-
tentially pathologic events including, for ex-
ample, increased prostaglandin synthesis,
elevated production of second messengers, in-
flammation, and mitochondrial dysfunction,
as indicated by elevated reactive oxygen spe-
cies (ROS) and the opening of the mitochon-
drial permeability transition pore (MPTP).9–13

It is our contention that if the bioenergetics of
the brain are not normalized, the tissue will
die, and rectifying the other potentially
pathogenic events would be of little value. In
spite of the collapse of cellular homeostasis
during ischemia, the brain has the capacity to
re-establish energy metabolism and then to

Figure 1 A schematic of key ischemia and reperfusion-induced processes leading to mitochondrial
dysfunction and cell death
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counteract the ischemia-induced events, lead-
ing to the restoration of function if reperfu-
sion occurs within certain time constraints. In
this context, it has been a challenge to deter-
mine which of the reflow events unrelated to
bioenergetics are pathologic, vs those that are
merely epiphenomenal.

The central event to the evolution of irre-
versible mitochondrial injury appears to be
the formation of MPTP.14 The MPTP, when
open, becomes permeable to ions and large
molecules (�1,500 Kd), disrupting the mito-
chondrial electrochemical gradient necessary
to drive oxidative phosphorylation and ATP
synthesis.10 Although the MPTP is present in
the normal brain and subtle reversible open-
ings of the pore are detectable even at the early
stages of reperfusion, evidence suggests that
the massive pore opening is the final irrevers-
ible step in the evolution of brain damage.15

From the literature, there is evidence to sug-
gest that mitochondrial dysfunction is associ-
ated with free radical formation, calcium
overload, and inflammation during reflow,
which may contribute to the massive opening
of the MPTP.11 These will be discussed below
with the idea that concerted interventions in
these factors may produce neuroprotection.
One factor that generally has been overlooked
is that partial recovery of bioenergetics of the
tissue is transiently evident upon reperfusion,
and if the compromised energy metabolism
persists, secondary energy failure (SEF) is
manifested and cell death ensues.

Evidence for the existence of reflow-
induced SEF comes from 2 different models
of reversible ischemia. The first study comes
from a global ischemia model of delayed neu-
ronal death in the gerbil.16 A short-term (5-
minute) episode of global ischemia caused a
generalized loss of ATP and P-creatine, which
were readily replenished with reperfusion.
Certain vulnerable cells (i.e., hippocampal
CA1 pyramidal neurons) survived, with nor-
mal energy reserves for several days after the
insult, and then between days 2 and 4 of re-
flow, levels of high-energy phosphates signifi-
cantly dropped, concomitant with death of
the CA1 pyramidal neurons. The data sup-
port the relationship between delayed energy

depletion and neuronal death during reperfu-
sion.16 Of interest, there is evidence of selec-
tive delayed neuronal death phenomenon
following cardiac arrest and resuscitation in
humans.17

In the second model, delayed secondary
loss of bioenergetics (i.e., SEF) and cell death
have been demonstrated in a focal model of
reversible ischemia. The middle cerebral ar-
tery in the rat was transiently occluded for 2
hours, and energy stores of the ischemic core
and surrounding region (i.e., penumbra) were
variably depleted.18,19 Upon reperfusion, the
concentration of ATP in the cerebral cortex
was transiently restored, only to fail several
hours later (figure 2). In contrast, levels of
glucose remain elevated, as levels of ATP de-
creased, indicating the ATP effect was unre-
lated to changes in substrate availability.
These findings have been confirmed by sev-
eral laboratories, which also found that the
magnitude of the changes was more pro-
nounced in the ischemic core than in the pen-
umbra.18,19 Noticeably, there was a complete
restoration of blood flow in both models of
ischemia, suggesting that deprivation of glu-
cose and oxygen was unlikely to be the precip-
itating cause of secondary energy depletion
and cell death.

From the experimental results on ischemic
and reperfusion events, our current knowl-
edge of the pathophysiology of ischemia can
be summarized as follows. First, cessation of
mitochondrial respiration and lactic acidosis
without reflow results in cell necrosis. Second,
ischemia primes certain mitochondrial com-
ponents, making mitochondria more suscep-
tible to a variety of reflow-induced pathogenic
events, as evidenced by increased free radical
formation and calcium-induced uncoupling
of oxidative phosphorylation. Third, unique
adverse reactions initiated during reflow are
energy-dependent, since they occur only if
mitochondria are transiently active during
reperfusion. Therefore, energy production by
mitochondria appears to be a prerequisite for
the evolution of cell damage, allowing certain
pathogenic events such as apoptosis to occur.
Subsequently, mitochondrial failure, medi-
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ated by the opening of the MPTP, leads to
cellular death.

To iterate, brain function is absolutely de-
pendent on cellular homeostasis that requires
a continual supply of energy, but that can be
sustained only transiently during ischemia
when ATP is supplied primarily by anaerobic
glycolysis. Because the evidence from delayed
neuronal death and SEF indicate energy avail-
ability is essential in the evolution to cell
death, the organelle central to brain damage
appears to be the mitochondria. This some-
what paradoxical finding indicates that the
fate of cells, whether survival or death, is
energy dependent. Therefore, it seems
likely that other reflow-induced factors, like
ROS production and inflammation, be-
come involved in the final tissue outcome
following ischemia.

REACTIVE OXYGEN SPECIES The overproduc-
tion of reactive oxygen species upon reflow is well-
documented and is ubiquitous within the cell. Under
physiologic conditions, the mitochondria-generated
superoxide anion (O2

�), hydrogen peroxide (H2O2),
and hydroxyl radical (OH�) play important roles in
regulating those pathways integral to signaling and

metabolism.20 These ROS are normally inactivated
by endogenous scavenging systems. Excessive ROS
production, however, can overwhelm free radical
scavenging systems that may have been compromised
by ischemia. Perturbations in various components of
the respiratory chain during reflow have been attrib-
uted to endogenous ROS. The major source of ROS
production in the mitochondria is complex I and III
of the electron transport chain, and the oxidative
damage within the mitochondria is relatively wide-
spread.21 Experimental results on alterations of state
3 and state 4 respiration and the respiratory control
index indicate a normalization of the electron trans-
port system upon reflow and secondary mitochon-
drial dysfunction following transient cerebral
ischemia (figure 2).22,23 These parameters also de-
crease at a time prior to SEF. Although the causal
relationship between these events has not been estab-
lished, it is plausible that ROS during reflow reduces
the activity of the electron transport chain, resulting
in diminished ATP. Other major targets of ROS are
lipids. Peroxidative action of these macromolecules pro-
motes inactivation of key metabolic enzymes regulating
glucose metabolism, such as �-ketoglutarate dehydro-
genase and pyruvate dehydrogenase.24 Reduced mito-
chondrial respiratory function in rat brain was further
confirmed during the reperfusion period in both focal
and global ischemia models,22,23,25,26 and the extent of
the effect varies according to the region examined.27

Generally, as mitochondria become more dysfunc-
tional, additional free radicals form, increasing the like-
lihood of cell death.

Many of the aforementioned free radicals are also
produced by a number of cytosolic reactions, includ-
ing cyclo-oxygenase, lipo-oxygenase, and xanthine
oxidase.28 Another highly reactive free radical is per-
oxynitrite, which is a product of NO and superoxide
anion, capable of nitrosylating certain functional
proteins. In general, oxidation of proteins, lipids, and
nucleic acids by ROS can markedly destabilize cellu-
lar homeostasis.

CALCIUM OVERLOAD The intracellular concen-
tration of calcium is normally highly regulated
through control of calcium channels and exquisite
active sequestering systems, including endoplasmic
reticulum and mitochondria.29 Calcium is one of the
most intriguing cations in the brain, and it is not sur-
prising that this multipotent molecule has been impli-
cated in the opening of the MPTP and in cell death.
The influx of ionized calcium induced by ischemia has
been shown to cause a broad range of events, from lipol-
ysis, proteolysis, and DNA fragmentation to distur-
bances in axonal transport, edema, and vascular
dysfunction.30 Ionic calcium is also bound to certain

Figure 2 Time course of adenosine triphosphate (ATP), glucose, and
mitochondrial respiratory function following 2 hours of focal
ischemia and 0 to 8 hours of reperfusion

These data are presented as percentages of those of the contralateral cerebral cortex.
Mitochondrial respiratory function was indicated by oxidative phosphorylation, assessed
by measurement of oxygen consumption by mitochondria in the presence of nicotinamide
adenine dinucleotide–linked or flavin adenine dinucleotide–linked substrates. Oxidative
rates (state 3: adenosine diphosphate [ADP]–stimulated; state 4: resting state, ADP-
limited) were calculated and expressed as nanoatom oxygen/minute/mg protein. The respi-
ratory control ratio (RCR) was determined by the equation RCR � state 3 activity/state 4
activity. Data are from Lust et al. (2002),19 Kuroda et al. (1996), 22 and Nakai et al. (1997).23
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intracellular molecules, and one of the more notable
moieties is phosphate, which coincidentally is a product
of ATP hydrolysis. Understanding the role of calcium
has been hampered by the total tissue concentration be-
ing about 1 mM, whereas free resting cytosolic calcium
is one-ten-thousandth of that concentration. One re-
port on calcium in ischemic brain damage showed a
0.6-mM increase in intracellular calcium with evolving
stroke damage,31 but such an increase in free calcium
seems unlikely. In addition, it would appear that any
stimulus to release calcium from a large pool of the
bound or sequestered calcium could impact markedly
on the many calcium-dependent events in the cytosol.
Nevertheless, calcium overload has been implicated
as another purported signal for the opening of the
MPTP.29 In both the delayed neuronal death and sec-
ondary energy failure models, tissue ATP levels were
maintained just prior to energy failure and manifesta-
tion of cellular damage. Because the duration from the
onset of reflow to energy depletion ranged from hours
to days in these 2 animal models, the link between cal-
cium overload and energy failure appears obscure. It is
possible, however, that a state may be reached where the
levels of calcium exceed the capacity to remove this cat-
ion from the cytosol. Under these circumstances, it is
possible that energy consumed to support calcium se-
questration would exceed the rate of energy production,
a condition favoring energy depletion.

INFLAMMATION Cerebral ischemia initiates an in-
flammatory response that furthers mitochondrial in-
jury. This response occurs sooner and is more robust
with reperfusion.32 The inflammatory response to
vessel occlusion is initiated within the vessel immedi-
ately and results in activation of complement, plate-
lets, and endothelium.33 Sequential expression of
adhesion molecules, including selectins, intercellular ad-
hesion molecules, and vascular cell adhesion molecules,
results in first neutrophil and later monocyte adhesion
to the endothelial wall.34,35 Within the vasculature, acti-
vated leukocytes contribute to vessel occlusion both di-
rectly and by releasing proinflammatory cytokines,
proteases, and ROS, which injure the endothelial sur-
face, leading to thrombus formation, vasospasm, and
worsening ischemia.33 Inflammatory mediators contrib-
ute to breakdown of the blood–brain barrier, further
promoting the infiltration of leukocytes into the brain.9

Within the brain parenchyma, activation of the
resident tissue macrophages, microglia, is activated
within minutes of ischemic onset. Hypoxia causes
depolarization, and extracellular ATP and uridine
triphosphate levels rise. These molecules serve as
early danger signals, which stimulate the activation of
microglia. Microglia are further activated as cells be-
gin to die within the brain. Loss of cell– cell interac-

tions, including the surface proteins CD200 and
CX3CL1 on neurons and their receptors on micro-
glia, further promote microglial activation.36,37 A va-
riety of molecular signals released from dead cells,
so-called danger-associated molecular pattern mole-
cules (DAMPs), activate pattern recognition recep-
tors including Toll-like receptors expressed on
microglia. DAMPs further contribute to the inflam-
matory response to stroke by inducing proinflamma-
tory gene expression in infiltrating leukocytes and by
priming dendritic cells for antigen presentation.33

The importance of the immune response to stroke is
underlined by the numerous anti-inflammatory in-
terventions that limit injury in animal models.34

Interactions between the immune system and mi-
tochondria have been examined in other neurode-
generative diseases, including Alzheimer disease,
Parkinson disease, and multiple sclerosis.38,39 ROS
generated by microglia can cause mutations in
mtDNA and damage enzyme of the respiratory
chain, which can cause dysfunction in oxidative
phosphorylation and increased ROS production.39

Cytokines also directly damage mitochondria. For
example, tumor necrosis factor–� (TNF�) and
interferon-� increase inducible nitric oxide synthase
expression and cause elevated nitric oxide production
in primary cultures of rat oligodendrocytes.33 TNF�

can also trigger excitotoxicity.33 Timing of the early
inflammatory response coincides with the secondary
failure of the bioenergetic function. However, fur-
ther studies are needed for more detailed correlation
of inflammatory response with mitochondrial failure
during cerebral ischemia/reperfusion.

CLINICAL IMPLICATIONS We summarized 3 key
elements of reperfusion-related injury cascade that ei-
ther directly or indirectly result in mitochondrial
dysfunction and failure of cellular bioenergetics. Oc-
curring in parallel, these processes are certain to cause
the mitochondrial failure. In order to surmount the
challenges in search of effective neuroprotective ther-
apies, it appears that a combination of agents inhibit-
ing the numerous deleterious processes should be a
logical next step.

Elucidation of the complex pattern of cellular
changes during experimental ischemia led to univer-
sal optimism that novel effective therapeutic inter-
ventions were imminent. The successful translation
of neuroprotection in animal studies into clinical
practice, however, has remained elusive. Over 80 pu-
tative neuroprotective agents have been tested in
clinical trials, but none were effective. The Stroke
Therapy Academic Industry Roundtable (STAIR)
criteria were offered as guidelines aimed at making
preclinical work in animals more reflective of human
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stroke. These guidelines recommended physiologic
monitoring during surgeries, clinically relevant time
windows, defining minimally effective and toxic
drug levels, and outcome measures, which included
functional analyses similar to those used in human
studies.40 The Stroke-Acute Ischemic NXY Treat-
ment (SAINT) trials, which tested a free radical scaven-
ger, were reported to have fulfilled them, and when the
SAINT I trial reported a positive result, optimism again
surged. However, NXY 059 had several shortcomings,
including poor blood–brain barrier permeability, non-
physiologic oxidation potential, and low potency.41

These may explain why an agent that targeted the ROS
generated by mitochondria failed to protect the brain in
the larger SAINT II trial. Many subsequent studies have
analyzed the preclinical studies leading up to the
SAINT trials and showed numerous ways in which the
STAIR criteria were not fulfilled.42–44 In addition, the
outcome measure used in the trial examined a shift in
the Rankin Scale score as opposed to the traditional im-
provement to a score of 2 or less. This may have allowed
a less robust clinical effect to show a significant im-
provement in the SAINT I trial. Given the methodo-
logic shortcomings of the SAINT trials, their result
should not be seen as evidence that targeting ROS is not
a potential therapy for cerebral ischemia. The STAIR
criteria have been updated to include the removal of
bias during preclinical experiments, the use of male and
female animals as well as aged or diseased animal mod-
els, which may more closely resemble stroke patients,
and the inclusion of biomarkers.45 It is hoped that ad-
herence to these recommendations will lead to the de-
velopment of effective therapies for neuroprotection;
however, it must be remembered that the STAIR crite-
ria are not validated and cannot be until a neuroprotec-
tive agent fulfilling the STAIR criteria is proved
effective in clinical trials. More simply, STAIR criteria
remain a hypothesis that has been tested but not yet
proven.

Although the translation problem has not been re-
solved, interventions aimed at maintaining mitochon-
drial integrity and optimizing function, while difficult
to design, may offer some hope. Agents that attenuate
the deleterious insults of excess calcium and ROS on
mitochondria should be tested. Stabilization of calcium
homeostasis may be in part supported by treatment
with lithium,46 magnesium,47 and calcium channel
blockers such as nimodipine.48,49 Although these agents
may or may not be effective when given alone, they may
be combined with free radical scavengers50,51 such as res-
veratrol,52,53 tempol,54 and edaravone.55 Another ap-
proach is to combine agents that inhibit mitochondrial
damage with those that support mitochondrial function.
Any and all procedures that improve mitochondrial func-
tion should be considered, including hypothermia, use of

coenzyme Q, and use of alternative substrates.56,57 Further-
more, some agents such as the immunosuppressant cyclo-
sporine A have dual mechanisms of action, as an MPTP
inhibitor and anti-inflammatory agent.58 Peroxisome pro-
liferator–activated receptor agonists have been found to
have both anti-inflammatory and antioxidative actions.
These agents suppress the inflammatory response to cere-
bral ischemia, including reducing the expression of proin-
flammatory cytokines and influx of systemic inflammatory
cells and increasing the expression of free radical scaven-
gers.59,60 Agents that act on multiple sites on the mitochon-
dria to reduce organelle dysfunction are more likely to be
effective, since if only one pathway of mitochondrial injury
is targeted, other avenues of injury will remain susceptible.
Combination therapy may prolong the temporal thera-
peutic window.61

In animal studies, combined drug therapy tar-
geted to reduce oxidative stress and mitochondrial
dysfunction showed enhanced neuroprotection after
stroke, reduced infarct volume, and improved
functional-behavioral outcomes.62– 66 It should be
emphasized that the strategy we propose is in no way
to create a cocktail of all the listed agents, but rather
to design a treatment with 2 agents, where each agent
shows some indication of efficacy but the effects are
not significant. With 2 agents acting at different sites
on the mitochondria, it is quite possible that the de-
gree of neuroprotection may become additive or even
synergistic. Although such an approach is not with-
out pharmacologic problems, it may be an answer to
the ubiquitous pathology engendered by ischemia.

The evidence for a role of mitochondria in the
evolution of ischemia-induced cell damage/death is
convincing. It seems unlikely that inhibiting one
mitochondria-related pathologic process alone would
reverse the evolution of cell damage or death. Thus,
failure of translation of neuroprotective therapies
into clinical practice may be due to the fact that most
of the approaches have focused on blocking one as-
pect of the ischemic cascade, suggesting a multifac-
eted approach may be more effective at preventing
secondary insults imposed on mitochondria. The ev-
idence suggests that effective neuroprotective thera-
pies will eventually evolve with a greater focus on the
multiple pathologic pathways that act on the mito-
chondria to cause dysfunction and cell death.
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