
Longitudinal fMRI
study for locomotor
recovery in patients

with stroke

Abstract—The authors investigated bihemispheric motor network reorganiza-
tion supporting locomotor recovery after stroke over time. They determined
longitudinal changes in locomotor function and fMRI in 10 stroke patients at
the subacute stage and the chronic stage. The results suggest that the bihemi-
spheric reorganization mechanism underlying locomotor recovery evolved from
the ipsilateral (contralesional) primary sensorimotor cortex (SM1) activation at
the subacute stage to the contralateral (ipsilesional) SM1 activation at the
chronic stage.
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Since the introduction of functional neuroimaging
techniques, the motor recovery mechanism for
stroke patients has been elucidated.1 In addition,
several studies have been reported that cortical
activities can change as motor recovery progresses
in stroke patients.2-6 The clarification of such a
relationship is important because results of such
studies could guide new rehabilitation strategies
for stroke patients. The majority of these studies
focused on the interval changes with the motor
recovery of upper extremity, and little is known
about the cortical activation changes concurrent
with locomotor recovery in stroke patients.2-7

Therefore, we investigated cortical activity
changes occurring during locomotor recovery after
stroke, using fMRI.

Methods. Subjects. We recruited 10 stroke patients (six men;
mean age 50.0 years, SE � 2.7) and age-matched eight normal
control subjects (four men; mean age 51.8 years, SE � 2.4). All
subjects signed an ethical approval and informed consent form.
Inclusion criteria for stroke patients were 1) first-ever stroke, 2)
complete loss of muscle strength of the paretic lower extremity at
the onset of stroke but recovered to the extent of the ability to
move the leg against gravity at least 3 weeks post-stroke, and 3)
good locomotor recovery from the subacute to the chronic stage
(more than 2 grade on the Modified Motor Assessment Scale
[MMAS]).

Locomotor function evaluation. Standardized Motoricity In-
dex (MI) (lower extremity only) and MMAS (walking item only)
were used to determine locomotor function. MI is a measure of
integrity of lower extremity motor function with a maximum score
of 100. MMAS was used to assess locomotor function. Each item is
scored on a scale from 0 (unable to stand or walk) to 6 (walk up
and down four steps). The reliability and validity for the MI and
MMAS are well established.8,9

fMRI. fMRI was performed in stroke patients twice and con-
trol subjects once. The first fMRI for stroke patients was per-
formed when the patients were able to extend the knee against
gravity (average time, 5.4 weeks), and the second fMRI was per-
formed at 6 months from onset. The subject’s head, trunk, pelvis,
and hip were secured to prevent any motion artifact using a cus-
tomized immobilizing frame. The task involved sequential knee
flexion-extension with a predetermined angle of 0 to 60 degrees at
a metronome-controlled frequency of 0.5 Hz (cycle of 15 seconds of
rest and 15 seconds of stimulus).

The blood oxygenation level–dependent (BOLD) fMRI mea-
surement, which employs the echo-planar imaging (EPI) tech-
nique, was performed using a 1.5-T MR scanner (Vision, Siemens,
Erlangen, Germany) with a standard head coil. For the anatomic
base images, 20 axial, T1-weighted, conventional, 5 mm thick,
spin-echo images were obtained with a matrix size � 128 � 128
and a field of view (FOV) � 210 mm, parallel to the bicommissure
line of the anterior commissure-posterior commissure. EPI BOLD
images were acquired over the same 20 axial sections for each
epoch, producing a total of 1,200 images for each subject. Imaging
parameters for each experiment consisted of TR/TE � 3,000
msec/60 msec, FOV � 210 mm, matrix size � 64 � 64, and slice
thickness � 5 mm. fMRI data were analyzed using SPM-99 soft-
ware. Statistical parametric maps were obtained and voxels were
considered significant at a threshold of p � 0.05, corrected. A
laterality index (LI) was used to determine any shift in the sym-
metry of cortical activation between the two hemispheres for the
region of interest (ROI): SM1, premotor cortex (PMC), supplemen-
tary motor area (SMA), posterior parietal cortex, cerebellum, and
vermis.1,10 LI is expressed as (C � I)/(C � I), where C � contralat-
eral (ipsilesional) activation and I � ipsilateral (contralesional)
activation.

Statistical analysis. A separate Wilcoxon signed rank test
for two related samples was used to evaluate changes in the MI
and MMAS. LI changes of the paretic leg from the subacute
stage to chronic stage were determined and compared with
those of controls and nonparetic leg. Spearman’s R statistics
were computed to determine any direct relationship between
the locomotor function changes and LI score. Significance level
was set at p � 0.05.

Results. Locomotor function data. A separate Wil-
coxon signed rank test revealed changes in MI and
MMAS scores (p � 0.05), suggesting that over the course
of the recovery period, mean locomotor function recov-
ered from poor ambulation to normal or close to normal
ambulation (table 1).
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Neuroimaging data. Normal control subjects showed
activation in the contralateral SM1, PMC, and the ipsilat-
eral cerebellum. There was no difference in regional acti-
vation between the right and the left leg (p � 0.05). The
mean (SD) LI for SM1 was 0.85 (0.07) for right leg and
0.81(0.10) for left leg.

In the subacute stage, the paretic leg movement was
associated with regional activation similar to that of con-
trol subjects, but ipsilateral SM1 and SMA were coacti-
vated (figure). In the chronic stage, the recovered paretic
leg movement was associated with an increased activation
in the contralateral SM1 and a relative disappearance in
the ipsilateral SMA, PMC, and cerebellum activation (p �
0.05). The nonparetic leg movement activated regions sim-

ilar to those of the control subjects, but SMA activation
was present as seen in the paretic leg movement.

In the stroke patients, among the LIs in the ROIs, the
LI in the SM1 increased over time for the paretic leg,
but did not change for the nonparetic leg (table 2). This
difference was significant. In the subacute stage of re-
covery in the paretic leg, the leg movement induced
slightly higher in the ipsilateral activation than the con-
tralateral SM1 activation, resulting in a mean (SD) SM1
LI score of �0.02 (0.17). The nonparetic leg in the sub-
acute stage, in contrast, had a mean (SD) SM1 LI of 0.87
(0.66). In the chronic stage, the mean (SD) SM1 LI for
the paretic leg was 0.68 (0.20) and 0.82 (0.1) for the
nonparetic leg. The interval change of the LI for SM1

Table 1 Patient demographic and clinical data

Time fMRI acquired

MI MMAS

Patients Sex/age
Lesion

location
Risk

factors
Subacute

(wk)
Chronic

(mo) Subacute Chronic Subacute Chronic

1 M/43 R CR infarct Cig 4 6 47 91 3 6

2 F/60 R CR infarct NIDDM, HTN, Hchol 6 6 47 85 2 5

3 M/42 R CR & BG hemorrhage NIDDM, HTN, Hchol 6 6 37 49 2 5

4 M/59 R CR infarct NIDDM, HTN 6 6 37 83 2 5

5 F/45 R CR & BG hemorrhage HTN 6 6 37 49 3 5

6 F/62 R CR & BG hemorrhage NIDDM, HTN 5 6 47 91 3 6

7 M/40 R CR infarct HTN 4 6 47 91 3 6

8 M/54 R CR & BG hemorrhage NIDDM, HTN, Hchol, Cig 6 6 37 49 2 4

9 F/56 L CR & BG hemorrhage HTN, Hchol 6 6 37 85 2 5

10 M/39 L CR & BG hemorrhage NIDDM, HTN 5 6 51 91 3 6

Mean 50 5.4 6.0 42.2 76.4 2.5 5.3

SEM 2.9 0.3 0.0 1.8 6.1 0.2 0.2

p Value 0.005 0.003

MI � Motoricity Index; MMAS � Modified Motor Assessment Scale; CR � corona radiata; BG � basal ganglia; NIDDM � non–insulin-dependent diabetes
mellitus; HTN � hypertension; Afib � atrial fibrillation; Hchol � hypercholesterolemia; Cig � cigarette smoking; SEM, standard error measurement.

Figure. Cortical reorganization illus-
trated in fMRI. The A columns repre-
sent T2-weighted diagnostic images.
The B and C columns represent fMRI
images obtained at the subacute stage
and the chronic stage of locomotor re-
covery. The unaffected primary sensori-
motor cortex was activated in all
patients at the subacute stage, but de-
creased in five patients (Patients 3, 5,
6, and 8) and disappeared in five pa-
tients (Patients 1, 2, 4, 7, 9, and 10) at
the chronic stage.
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was correlated with the MI (r � 0.63, p � 0.05) and
MMAS (r � 0.70, p � 0.05) scores.

Discussion. We demonstrate interhemispheric re-
organization underlying locomotor recovery after
stroke. Because our study is the first longitudinal
fMRI observation to demonstrate a progression of
the LI from the subacute stage to the chronic stage,
there are no data to compare with our present find-
ings. In either case, the regions of activation ob-
served in control subjects during leg movement were
similar to those seen in the nonparetic leg in stroke
patients. In the subacute stage, our leg movement-
related activation was evident in the bilateral hemi-
sphere. Later in the chronic stage, the significant LI
increase reflects a combined phenomenon of a reduc-
tion in contralesional (ipsilateral hemisphere) activ-
ity and an increase in ipsilesional (contralateral
hemisphere) activity.

Although the mechanism of locomotor recovery in
stroke remains unclear, our results support the pre-
vious finding that SM1 activation shifted from the
unaffected hemisphere to the affected hemisphere
associated with motor recovery of the upper
extremity.2,4-6 Our fMRI observation was also com-

patible with a spectroscopic topography study that
showed increased contralateral SM1 activation as lo-
comotor recovery proceeded.7 The present data com-
bined with the previous findings2-6 suggest that
ipsilateral motor tract is accountable, in part, for the
mechanism of such an altered bihemispheric activa-
tion in the early stage of locomotor recovery. The
enhanced SM1 activation in the affected hemisphere
may be one common mechanism underlying motor
recovery after stroke.
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MRI and EEG findings in Heidenhain
variant of Creutzfeldt–Jakob disease
Salah G. Keyrouz, MD; Bishoy T. Labib, MD; and
Rajesh Sethi, MD, Little Rock, AR

A 51-year old woman was admitted with rapidly progressive
memory loss, language impairment, and difficulty performing rou-

tine daily activities. Prior to admission, she was on a psychiatric
ward because of visual hallucinations and abnormal behavior. She
was aphasic, cortically blind and spastic with exaggerated re-
flexes, bilateral Babinski, and frequent multifocal myoclonic jerks.
CSF 14-3-3 protein was elevated. The patient died 4 months after
unrelenting progression. This patient had probable sporadic
Creutzfeldt–Jakob disease (CJD), Heidenhain variant.1 The lead-
ing symptoms of a visual disorder and rapid progression have
been referred to as the “Heidenhain variant” of CJD since 1954. It
shows the most pronounced neuropathologic/radiologic changes in
the occipital lobes (figure).
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Figure. (A) Diffusion-weighted MRI
(DWI) showing ribbon-shaped hyperin-
tense signals in the occipital and right
temporal lobes. DWI is valuable for di-
agnosis of Creutzfeldt–Jakob disease.2

DWI is more tolerant of motion arti-
facts than T2WI and fluid attenuated
inversion recovery images, making it
superior in patients with myoclonic
jerks. Similar DWI changes can be seen
in anoxia, reversible posterior leukoen-
cephalopathy syndrome, and CNS vas-
culitis. The basal ganglia are spared.
(B) EEG revealing runs of bihemi-
spheric, periodic sharp wave complexes.
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