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Abstract
Background and Objectives
There is an increasing awareness of the “Heart-Brain Connection,” whereby cardiovascular
function is connected with cognition. Diffusion-MRI studies reported higher brain free water
(FW) was associated with cerebrovascular disease (CeVD) and cognitive impairment. In this
study, we investigated whether higher brain FWwas related to blood cardiovascular biomarkers
and whether FW mediated the associations between blood biomarkers and cognition.

Methods
Participants recruited from 2 Singapore memory clinics between 2010 and 2015 underwent
collection of blood samples and neuroimaging at baseline and longitudinal neuropsychological
assessments up to 5 years. We examined the associations of blood cardiovascular biomarkers
(high-sensitivity cardiac troponin-T [hs-cTnT], N-terminal pro-hormone B-type natriuretic
peptide [NT-proBNP], and growth/differentiation factor 15 [GDF-15]) with brain white
matter (WM) and cortical gray matter (GM) FWderived from diffusionMRI using whole brain
voxel-wise general linear regression. We then assessed the relationships among baseline blood
biomarkers, brain FW, and cognitive decline using path models.

Results
A total of 308 older adults (76 with no cognitive impairment, 134 with cognitive impairment no
dementia, and 98 with Alzheimer disease dementia and vascular dementia; mean [SD] age: 72.1
[8.3]) were included. We found that blood cardiovascular biomarkers were associated with
higher FW in widespread WM regions and in specific GM networks including the default mode,
executive control, and somatomotor networks at baseline (p < 0.01, family-wise error corrected).
Baseline FW in widespread WM and network-specific GM fully mediated the associations of
blood biomarkers with longitudinal cognitive decline over 5 years. Specifically, in GM, higher
FW in the default mode network mediated the relationship with memory decline (hs-cTnT:
β = −0.115, SE = 0.034, p = 0.001; NT-proBNP: β = −0.154, SE = 0.046, p = 0.001; GDF-15:
β = −0.073, SE = 0.027, p = 0.006); by contrast, higher FW in the executive control network
was responsible for executive function decline (hs-cTnT: β = −0.126, SE = 0.039, p = 0.001;
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NT-proBNP: β = −0.110, SE = 0.038, p = 0.004; GDF-15: β = −0.117, SE = 0.035, p = 0.001). Similar full mediation effects of
brain FW were also identified for baseline cognition.

Discussion
Results suggested a role of brain FW in linking cardiovascular dysfunction to cognitive decline. These findings provide new
evidence for brain-heart interactions, paving the way for prediction and monitoring of domain-specific cognitive trajectory.

Cerebrovascular disease (CeVD) is related to an increased risk
of developing cognitive impairment and dementia.1 There is an
increasing awareness of a “Heart-Brain Connection,”2 where
cardiac disease and vascular function may potentially contrib-
ute to CeVD, dementia due to Alzheimer disease (AD), and
vascular cognitive impairment.3-5 Studies have demonstrated
that peripheral cardiovascular dysfunction may lead to blood
vessel damage and neurovascular alterations through both
vascular and AD pathophysiologic pathways in dementia,
which eventually cause neuronal injury and cognitive dys-
function.6 For example, the established circulating markers of
cardiac diseases such as high-sensitivity cardiac troponin-T (hs-
cTnT) and N-terminal prohormone B-type natriuretic peptide
(NT-proBNP) exhibit upregulation in the early phases of
cardiac dysfunction and myocardial injury.7 These cardiovas-
cular blood biomarkers have been associated with concomitant
CeVD MRI markers such as cortical microinfarcts8,9 and cog-
nitive dysfunction.10 BNP, particularly, was found to predict
vascular cognitive impairment, independent of cardiovascular
risk factors.7,10 Growth/differentiation factor 15 (GDF-15), a
cardiovascular biomarker with protective and trophic bio-
activity in cardiomyocytes,11 was related to small vessel CeVD
in dementia.10 However, the relationships between circulating
cardiovascular markers and cerebrovascular function un-
derlying cognitive decline are not yet fully understood.

Diffusion MRI (dMRI) has emerged as an important method
for studying CeVD and dementia.12 Free water (FW) volume
derived from dMRI13 using a bitensor model reflects the
relative contribution of freely diffusing extracellular water
molecules that are unrestricted by their local microenviron-
ment.13 Higher FW in the white matter (WM) was found in
patients with CeVD or AD dementia compared with that in
controls and associated with dementia severity and cognitive
decline.14-17 Of interest, a recent study demonstrated that FW
alternations in the gray matter (GM) may indicate neuronal
microstructure perturbations in the AD continuum18 and was

associated with cognition.19 However, there is a lack of un-
derstanding of whether cardiovascular dysfunction is related
to these CeVD-related FW abnormalities and eventually leads
to general and domain-specific cognitive impairment. Fur-
thermore, it is unclear whether such relationships are specific
to certain brain networks or regions.

Accumulating evidence suggests that the executive control net-
work (ECN) and somatomotor network (SMN) changes were
related to cerebrovascular dysfunction.20-22 By contrast, AD pa-
thology (i.e., amyloid plaques and neurofibrillary tangles) leads
to targeted large-scale brain network disorganization specifically
in the default mode network (DMN).23,24 Reduced network
connectivity (through resting-state functional MRI) and me-
tabolism (through [18F]Fluorodeoxyglucose-PET) in the ECN
andDMNwere associated with deficits in executive function and
memory.25-27 Nevertheless, it remains unknown whether brain
cortical FW changes relate to cardiovascular dysfunction and
domain-specific cognitive decline in a network-specific manner.

To investigate these research questions, we examined the asso-
ciations of brain FW in WM and GM with cardiovascular blood
biomarker levels and cognitive measures in an Asian memory
clinic population with a high CeVD burden. We hypothesized
that (1) higher cardiovascular biomarkers levels would be asso-
ciated with higher FW mainly in the frontal-parietal regions
related to executive and somatomotor functions; (2) both
baseline GM and WM FW would mediate the associations of
cardiovascular biomarkers with baseline and longitudinal
changes of global cognition; and (3) cortical GM FW would
influence cognitive function in a brain network–specific manner.

Methods
Participants
This study was part of an ongoing prospective memory clinic
study. Participants with no cognitive impairment (NCI),

Glossary
AD = Alzheimer disease; BBB = blood-brain barrier; BMI = body mass index; CeVD = cerebrovascular disease; CIND =
cognitive impairment no dementia; DTI = diffusion tensor imaging; DMN = default mode network; dMRI = diffusion MRI;
DSM-IV = Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition; ECN = executive control network; FAt = tissue
compartment fractional anisotropy; FW = free water;GDF-15 = growth/differentiation factor 15;GLM = general linear model;
GM = gray matter; hs-cTnT = high-sensitivity cardiac troponin-T;NCI = no cognitive impairment;NT-proBNP = N-terminal
pro hormone B-type natriuretic peptide; SMN = somatomotor network; TIV = total intracranial volume; VaD = vascular
dementia; WM = white matter; WMH = WM hyperintensity.
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cognitive impairment with no dementia (CIND), AD de-
mentia and vascular dementia (VaD) were recruited from the
National University Hospital of Singapore and Saint Luke’s
Hospital.17,28,29 AD dementia was diagnosed in accordance
with Diagnostic and Statistical Manual of Mental Disorders,
Fourth Edition (DSM-IV) for dementia and internationally
established criteria for the clinical diagnosis of AD dementia.30

VaD was diagnosed using the DSM-IV criteria for dementia
and internationally established criteria for the clinical di-
agnosis of VaD.31 CIND was determined based on objective
impairment in at least 1 domain of the neuropsychological
assessment but did not meet the DSM-IV criteria for de-
mentia.28 Participants were classified as NCI if they had no
objective impairment in the neuropsychological assessment.29

Participants of the cohort study were aged 50 years and older
and had no major vascular risk factor–related encephalopathy
or significant neurologic comorbid conditions or loss of
functional independence (detailed diagnoses, significant

CeVD, and inclusion/exclusion criteria are provided in
eMethods, links.lww.com/WNL/C813).

Of 471 participants enrolled between August 2010 and August
2015, we studied 308 participants (76 with NCI, 134 with
CIND, and 98 with AD and VaD) according to the following
criteria (see flowchart in eFigure 1, links.lww.com/WNL/
C813): (1) passed the MRI data quality control (details in
imaging data processing) and (2) had blood and cognitive test
information (Table 1). A total of 271 participants (68 with
NCI, 121 with CIND, and 82 with AD and VaD) with baseline
cognitive scores and at least 1 follow-up were included in the
longitudinal analysis (eTable 1). Characteristics of the included
and excluded participants were similar (eTable 2).

Neuropsychological Assessments
Neuropsychological assessments were performed using a lo-
cally validated comprehensive neuropsychological battery32 at

Table 1 Demographic, Cognition, and Circulating Cardiovascular Biomarker Levels of Participants

NCI (n = 76) CIND (n = 134) Dementia (n = 98) p Value

Age, y, mean (SD) 68.5 (6.1) 71.0 (8.2) 76.3 (8.2)a,b <0.001

Sex, female/male 44/32 62/72 62/36 0.03

Ethnicity, Chinese/non 67/9 103/31 73/25 0.07

Education, y, mean (SD) 10.3 (4.7) 7.6 (4.9)a 4.8 (4.9)a,b <0.001

Handedness, right/left 73/3 131/3 98/0 0.12

MMSE (max = 30), median (IQR) 28.0 (3.0) 25.0 (4.0)a 16.0 (7.0)a,b <0.001

Global CDR, mean (SD) 0.1 (0.2) 0.3 (0.2)a 1.2 (0.5)a,b <0.001

Hypertension, yes/no 43/33 91/43 83/15 <0.001

Hyperlipidemia, yes/no 51/25 105/29 71/27 0.19

Diabetes mellitus, yes/no 17/59 51/83 42/56 0.02

History of heart disease, yes/no 5/71 15/119 8/90 0.50

History of stroke, yes/no 12/64 51/83 27/71 0.003

Antiplatelet therapy, yes/no 18/58 48/86 34/64 0.17

Smoking, yes/no 20/56 40/94 25/73 0.74

BMI, kg/m2, mean (SD) 24.6 (4.1) 24.1 (3.6) 23.8 (3.9) 0.38

GDF-15, pg/mL, median (IQR) n = 76 n = 134 n = 98

827.1 (350.9) 1132.2 (1057.0)a 1555.4 (1549.7)a,b <0.001

NT-proBNP, pg/mL, median (IQR) n = 45 n = 93 n = 80

65.4 (58.8) 111.5 (152.7)a 179.5 (316.7)a,b <0.001

hs-cTNT, pg/mL, median (IQR) n = 45 n = 93 n = 80

6.2 (4.1) 9.6 (7.9)a 13.9 (10.4)a,b <0.001

Abbreviations: ANOVA = analyses of variance; BMI = body mass index; CDR = Clinical Dementia Rating; CIND = cognitive impairment no dementia; GDF-15 =
growth/differentiation factor 15; hs-cTnT = high-sensitivity cardiac troponin-T; IQR = interquartile range; MMSE = Mini-Mental State Examination; MoCA =
Montreal Cognitive Assessment; NCI = no cognitive impairment; NT-proBNP = N-terminal pro hormone B-type natriuretic peptide.
Superscript letters indicate whether the group mean was significantly different compared with aNCI; bCIND; following 1-way ANOVA or nonparametric
Kruskal-Wallis ANOVA (for MMSE and blood biomarkers). Χ2 tests were conducted on sex and ethnicity and binarized vascular-related covariates, while the
Fisher exact test was conducted for handedness. Bold indicates p < 0.05.
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baseline and at years 2, 4, and 5, which assesses memory,
executive function, language, attention, visuomotor speed,
and visuoconstruction (individual subtests in each domain are
summarized in eTable 3, links.lww.com/WNL/C813). Stan-
dardized domain scores were calculated following the pre-
vious study33 (see eMethods).

Vascular Risk Factor Assessment
and Medications
Data on various risk factors associated with vascular health
were collected through a combination of clinical interview,
examination of medical records, and physical examination.9

Hypertension was defined as systolic blood pressure
≥140 mm Hg and/or diastolic blood pressure ≥90 mm Hg or
the use of antihypertensive medication. Hyperlipidemia was
defined as total cholesterol levels ≥4.14 mmol/L or the use of
lipid-lowering medication. Diabetes mellitus was defined as
glycated hemoglobin ≥6.5% or the use of diabetic medication.
Heart disease was defined as the presence of coronary artery
disease, ischemic heart disease, or atrial fibrillation. History of
stroke was defined as having a clinical history of rapid-onset
focal or global neurologic deficits for >24 hours and con-
firmed onmedical records. Antiplatelet therapy was defined as
the use of antiplatelet medication. In addition, smoking his-
tory and bodymass index (BMI) were also recorded. BMI was
calculated by participant’s weight in kilograms divided by the
square of height in centimeters.

Blood Cardiovascular Biomarkers
Nonfasting blood was drawn from study participants. NT-
proBNP and hs-cTnT were measured using electro-
chemiluminescence immunoassays on an automatedCobas-e411
analyzer, while GDF-15 levels were measured using quantita-
tive sandwich immunoassays (see eMethods, links.lww.com/
WNL/C813).

Image Acquisition and Processing
Each participant underwent MRI scanning at the Center for
Translational MR Research, National University of Singapore
(3-T MAGNETOM Trio, Siemens, Germany). High-
resolution T1-weighted structural MRI was performed using
a magnetization-prepared rapid gradient echo. dMRI scans
were acquired using a single-shot fast echo-planar imaging
sequence (b value = 1,150 s/mm2, 61 diffusion directions, and
7 b0). Fluid-attenuated inversion recovery was also acquired.

The dMRI preprocessing was following previous work17 in-
cluding correction for head movements, eddy current dis-
tortions, and geometric distortions. We used the FW imaging
method on the preprocessed dMRI data to estimate the
fractional volume of freely diffusing extracellular water mol-
ecules (FW) and the tissue compartment fractional anisot-
ropy (FAt).13 Tract-based spatial statistics was applied to
perform the WM FW maps,17 while surface-based approach
was used to derive cortical GM FW maps18 of each partici-
pant. Please see eMethods (links.lww.com/WNL/C813) for
details of image acquisition and processing.

Statistical Analyses

Associations Between Cardiovascular Biomarker
Levels and Brain FW
To identify region-specific associations between brain FW
and the 3 logarithmically transformed blood cardiovascular
biomarkers within each clinical group (CIND + dementia and
NCI), we built general linear models (GLMs) for each blood
biomarker separately (Figure 1, step 1). The FW in the vertex-
wise surfaced GM or voxel-wise skeletonized WM images
were entered as the dependent variables. Each blood bio-
marker level was the independent variable of interest. We
included age, sex, education, ethnicity, total intracranial vol-
ume (TIV), cognitive status, and CeVD status as additional
covariates for both GLMs. We tested the interaction effects of
cognitive status (i.e., CIND/dementia) and CeVD status
(i.e., with and without CeVD) for the GLM of CIND + de-
mentia. We also tested the interaction effects of CeVD status
for the GLM of NCI. ForWMFWmeasures, skeleton regions
were examined for statistical significance using threshold-free
cluster enhancement and permutation-based nonparametric
testing (FSL, Randomise). For GM FW measures, cortical
regions were tested for significance using a Monte-Carlo
simulation with 10,000 repeats (Freesurfer, Glmfit). GLM
results for both WM and GM were reported at p < 0.01,
family-wise error corrected.

To mitigate possible confounds due to regional atrophy, we
included GM cortical thickness or WM volume as additional
covariates in vertex/voxel-based statistical models. To control
for the influence of vascular-related factors, we included the 8
vascular-related covariates (hypertension, hyperlipidemia,
diabetes mellitus, a history of heart disease, a history of stroke,
antiplatelet therapy, smoking history, and BMI) as nuisance
variables. Last, to minimize potential confounds due to WM
hyperintensity (WMH), we derived FW in normal-appearing
WM after excluding regions with WMH and repeated the
association analyses. We also compared the participant char-
acteristics across the 3 cognitive groups (see eMethods, links.
lww.com/WNL/C813 and Table 1).

Associations Between Cardiovascular Biomarker
Levels and Cognition
Based on the previous evidence that memory and executive
dysfunctions are most prevalent in dementia with concomi-
tant AD and CeVD,1,4,28,34 we conducted correlation analyses
between logarithmically transformed cardiovascular bio-
marker levels and cognition decline over time in all patients
(CIND + dementia), with a priori interest in global cognition,
memory, and executive function. Linear regression was cal-
culated between the baseline cognitive scores/longitudinal
rate of changes and cardiovascular biomarker levels across all
patients. The main model adjusted for age, sex, years of ed-
ucation, ethnicity, TIV, cognitive stage, and CeVD status. We
also validated the results in crude model (no covariates ad-
justed) and a model with further adjusted vascular-related
covariates. The threshold was set at p < 0.05 (2-tailed).
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To calculate the annual rate of change in cognitive outcomes
over time (mean = 3.81, SD = 1.52 years), linear mixed models
were conducted (see eMethods, links.lww.com/WNL/C813).

Path Analyses
To evaluate whether and how FW in the GM andWMmediates
the effects of higher blood marker levels on baseline global
cognitive deficits and longitudinal decline, we first performed
path analyses by including each blood biomarker (NT-proBNP,
hs-cTnT, or GDF-15) as a predictor, both WM and GMmatter
FW as mediators, and baseline global cognitive scores or longi-
tudinal global cognitive rate of changes as outcomes (Figure 1,
step 2). We used structural equation modeling method
(R [version 3.3.1] packages Lavaan [version 0.5–20]) control-
ling for age, sex, years of education, ethnicity, TIV, cognitive
stage, and CeVD status following our previous work.33 We built
1 model for each of the 3 blood biomarkers and each of the 2
outcome (baseline or longitudinal cognition) variables (i.e., in
total, 6models). For eachmodel, to representGMandWMFW,
we created brain masks containing only the regions that were
significantly correlated with each blood cardiovascular bio-
marker. Path analyses were used to simultaneously consider the
direct effect (blood biomarker on cognition) and the indirect
effect (each blood marker on cognition through mediators).

Second, we further evaluated how FW influenced the associa-
tion of higher blood marker levels on individual cognitive do-
mains (executive function and memory) using path models.
Based on the work from our group and others,15,17,28,35,36 we

expected that the role of FW in WM would be widespread
while the contribution from GMwould be specific to cognitive
networks. Therefore, we parcellated blood biomarker-related
GM regions (from the previous step) into regions of interests
according to the existing cortical functional parcellation.37 This
parcellation used clustering approach to identify and replicate 7
networks of functionally coupled regions across the cerebral
cortex, which have been shown corresponding to individual
cognitive performance.37 In thesemodels, blood biomarker was
the predictor; the mean GM FW of each network and mean
WM FW values derived from previous significant regions were
the mediators, and baseline memory and executive function
scores or longitudinal rate of changes were the outcomes. Age,
sex, years of education, TIV, cognitive stages, and CeVD status
were also included in the models. To mitigate possible con-
founds due to regional atrophy, we also repeated the same path
analyses using the ratio of mean WM FW divided by WM
volume and network-specific GM FW divided by network-
specific cortical thickness as mediators. We built the path
model, evaluated the model fits, and reported direct and in-
direct effects following the criteria in the previous work33 (see
eMethods, links.lww.com/WNL/C813).

Standard Protocol Approvals, Registrations,
and Patient Consents
Ethical approval was obtained from National Healthcare Group
Domain-Specific Review Board (2015/00406-AMD0012). Par-
ticipants gave informed consent according to the Declaration of
Helsinki.

Figure 1 Study Design Schematic

A total of 308 participants with either NCI, CIND or dementia were studied. GLMs were performed to identify region-specific associations between brain FW and
the 3 blood cardiovascular biomarkers within the CIND + dementia grouporNCI at baseline (step 1). Path analyseswere used to evaluatewhether and how FW in
the gray and whitemattermediated the effects of higher bloodmarker levels on baseline global cognitive deficits and longitudinal decline (step 2). Furthermore,
the influences ofnetwork-specificGMFWon theassociationof higher bloodmarker levelswith individual cognitive domainswerealsoevaluated. CIND= cognitive
impairment with no dementia; FW = free-water; GLM = general linear model; GM = gray matter; NCI = no cognitive impairment; WM = white matter.
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Data Availability
Data are available on reasonable request. Datasets gener-
ated for this study are available on request to the senior
author for noncommercial academic studies but may be
subject to some restrictions according to consent and
confidentiality.

Results
Group Differences in Blood Cardiovascular
Markers and Brain FW
Blood cardiovascular markers levels were higher in those with
CIND and patients with dementia compared with those with
NCI. Patients with dementia had greater blood cardiovascular
marker levels than the CIND group (Table 1). Within the

same cognitive stage, participants with CeVD had higher
cardiovascular markers levels than the non-CeVD participants
(see eMethods and eTable 4, links.lww.com/WNL/C813).
FW averaged across all the WM regions was greater in those
with CIND with and without CeVD compared with their
NCI counterparts (eFigure 2A). Furthermore, patients with
dementia had greater WM FW than those with CIND. Par-
ticipants with CeVD had greater WM FW compared with
non-CeVD participants among NCI, CIND, and dementia
groups. Similarly, FW averaged across all the GM regions was
increased along the dementia continuum. However, partici-
pants with CeVD did not show higher GM FW than their
non-CeVD counterparties (eFigure 2B). These results
remained in an age-matched, sex-matched, and education-
matched subcohort (see eResults and eFigure 3).

Figure 2 Higher White Matter FW Correlated With Circulating Cardiovascular Marker Levels

The whole-brain voxel-wise linear regression in-
dicated that higher FW values in widespread brain
white matter regions were associated with in-
creased levels of (A) hs-cTNT, (B) NTpro-BNP, and
(C) GDF-15. Results are TFCE enhanced, reported
at p < 0.01, FWE corrected. FW = free water; FWE =
family-wise error; GDF-15 = growth/differentiation
factor 15; hs-cTnT = high-sensitivity cardiac tro-
ponin-T; NT-proBNP = N-terminal pro hormone B-
type natriuretic peptide; TFCE = threshold-free
cluster enhancement.
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Associations of WM FW With Circulating
Cardiovascular Biomarker Levels
The voxel-wise analysis on the WM FW metrics showed
that greater cardiovascular biomarker levels (NT-proBNP,
hs-cTnT, and GDF-15) were associated with higher FW in
multiple WM regions (including projection, association,
commissural, limbic, and brainstem fibers) in all patients
with CIND and dementia at baseline (Figure 2, eTable 5,
links.lww.com/WNL/C813). There was no interaction
effect of cognitive stage or CeVD status on such associa-
tion. There was no region showing association of WM FW
with blood biomarkers in NCI regardless of the CeVD
status.

The results remained when (1) controlling for regional WM
volume (eFigure 4A, links.lww.com/WNL/C813), (2) con-
trolling for vascular-related covariates (eFigure 4B), and (3)
using FW in normal-appearing WM after excluding regions
with WMH (eResults). In addition, there was no association
of blood cardiovascular biomarker levels with WM tissue
compartment FAt. GDF-15, but not NT-proBNP and hs-
cTNT, was associated with total WMH volume (r = 0.19, 95%
confidence interval 0.07–0.31, p < 0.05).

Associations of GM FW With Circulating
Cardiovascular Biomarker Levels
All 3 cardiovascular biomarkers were related to higher FW in
GM at baseline, primarily in the ECN, DMN, and SMN.
Specifically, higher hs-cTnT was associated with greater FW
in bilateral middle frontal and temporal regions, mainly within

the DMN, ECN, SMN, and parts of dorsal/ventral attention
and limbic networks (Figure 3A, eTable 6, links.lww.com/
WNL/C813). Similarly, greater NT-proBNP was associated
with higher FW in bilateral frontal-parietal and left temporal
regions, within the ECN, DMN, SMN, and attention net-
works (Figure 3B, eTable 6). Higher GDF-15 levels were
associated with higher FW in the bilateral superior frontal and
anterior cingulate regions and right temporal-occipital re-
gions, which contain bilateral DMN, ECN, attention net-
works, and right limbic and visual networks (Figure 3C,
eTable 6). There was no interaction effect of cognitive stage
or CeVD status on this relationship. For NCI with and
without CeVD, no association was found between GM FW
and blood biomarkers.

The results remained when controlling for (1) the regional
cortical thickness (eFigure 5A, links.lww.com/WNL/C813)
and (2) vascular-related covariates (eFigure 5B). Besides, we
did not find any associations between cardiovascular bio-
marker levels and cortical thickness.

Brain FW Mediated the Association of
Cardiovascular Biomarkers With Cognition
We found that baseline cardiovascular biomarker levels
were associated with baseline global cognition, executive
functioning, and memory impairment and longitudinal
cognitive decline (Table 2). The results remained after
further adjusting for vascular-related covariates and in the
crude model (no covariates adjusted) (eTable 7, links.lww.
com/WNL/C813).

Figure 3 Higher Gray Matter FW Correlated With Circulating Cardiovascular Marker Levels

The whole-brain vortex-wise linear
regression indicated that higher FW
values in middle frontal and temporal
lobes and cingulate regions were as-
sociatedwith increased levels of (A) hs-
cTNT, (B) NTpro-BNP, and (C) GDF-15.
(D) Yeo’s functional intrinsic networks
parcellation.37 Results are reported at
p < 0.01, FWE corrected. DAN = dorsal
attention network; DMN = default
mode network; ECN = executive con-
trol network; FW = free water; GDF-15
= growth/differentiation factor 15;
hs-cTnT = high-sensitivity cardiac tro-
ponin-T; NT-proBNP = N-terminal
pro hormone B-type natriuretic pep-
tide; SMN = somatomotor network;
SN/VA = ventral attention network.
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The baselinemeanFW levels in bothGMandWMmediated the
association of hs-cTNT with baseline global cognitive impair-
ment (Figure 4A, eTable 8, links.lww.com/WNL/C813)
and the rate of global cognitive decline over time (Figure 4B,
eTable 9). Given the significant indirect effects (eTables 5 and 6)
of hs-cTNT on global cognition through GMFW andWM, and
nonsignificant direct paths from blood markers levels to global
cognition, we observed a complete mediation effect of both GM
and WM FW. Similar mediation effects of brain FW on the
association of NT-proBNP and GDF-15 levels with both base-
line global cognition and rate of change in global cognition over
time were observed (eResults, eFigure 6, eTables 8 and 9).

For the cognitive domain–specific (executive function and
memory) path analysis, FW in the ECN mediated the effect of
hs-cTnT levels on baseline (eFigure 7, eTable 10, links.lww.
com/WNL/C813) and the rate of executive function decline
(Figure 5, eTable 11). ECN FW had no effect on memory. By
contrast, FW in theDMNmediated the effect of hs-cTnT levels

on baseline and longitudinal memory decline but did not in-
fluence executive function. Last, the mean WM FW was the
mediator of both pathways (executive function and memory).

Notably, the direct paths between hs-cTnT and cognition
were not significant during the model pruning stage. All
mediators exerted a full mediation effect because the indirect
effects of hs-cTnT on cognition through all FW measures
were significant. Similar findings were observed in the path
analysis of NT-proBNP and CDF-15 (eResults, eTables 10
and 11, links.lww.com/WNL/C813). All results remained
after controlling forWM volume and network-specific cortical
thickness (eTables 12 and 13).

Discussion
This study demonstrates that baseline circulating cardiovas-
cular biomarker levels were associated with higher baseline
FW in multiple WM regions and in the DMN, ECN, and

Table 2 Associations of Cardiovascular Biomarker Levels With Baseline and Longitudinal Cognitive Scores

hs-cTnT (r, 95% CI) NT-proBNP (r, 95% CI) GDF 15 (r, 95% CI)

Baseline

Sample size 173 173 232

Global cognition −0.24 (−0.41 to −0.07)** −0.26 (−0.45 to −0.07)** −0.22 (−0.36 to −0.09)**

Executive function −0.25 (−0.40 to −0.09)** −0.28 (−0.45 to −0.11)*** −0.21 (−0.35 to −0.06)**

Memory −0.35 (−0.52 to −0.19)*** −0.25 (−0.40 to −0.11)** −0.28 (−0.45 to −0.11)***

Longitudinal

Sample size 155 155 203

Global cognition −0.22 (−0.37 to −0.07)** −0.23 (−0.38 to −0.08)** −0.24 (−0.39 to −0.11)***

Executive function −0.21 (−0.35 to −0.06)** −0.22 (−0.37 to −0.07)** −0.20 (−0.34 to −0.06)**

Memory −0.30 (−0.45 to −0.16)*** −0.29 (−0.43 to −0.15)*** −0.22 (−0.35 to −0.08)**

Abbreviations: GDF-15 = growth/differentiation factor 15; hs-cTnT = high-sensitivity cardiac troponin-T; NT-proBNP = N-terminal pro hormone B-type
natriuretic peptide.
**p < 0.01 and ***p < 0.001.

Figure 4 Effects of Circulating Cardiovascular Biomarker Levels on Global Cognition Through Mediators

Schematic diagram of the path analyses for hs-
cTNT. hs-cTNT was entered as a predictor in each
model. ThemeanWM FW andmean GM FWwere
added asmediators. (A) Global cognition baseline
impairment and (B) rate of decline over time (5
years) were treated as the outcome. Numbers on
the paths indicate standardized coefficients that
were statistically significant. FW = free water; GM
= gray matter; hs-cTnT = high-sensitivity cardiac
troponin-T; WM = white matter.
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somatomotor GM networks. Moreover, we found that the
associations of circulating cardiovascular marker levels with
baseline and longitudinal cognitive decline were fully medi-
ated by both higherWM and GMFW. Specifically, in GM, the
association of cardiovascular markers with executive function
was mediated by higher FW in the ECN, while the association
of blood markers with memory was mediated by greater FW
in the DMN, both at baseline and longitudinally. Widespread
higher WM FW mediated the same association for both do-
mains. Our findings provided new evidence supporting in-
creased brain FW as a proxy of cerebrovascular integrity,
largely accounting for the linkage between cardiovascular
dysfunction and cognitive impairment.

Our study demonstrates that FW measures in the brain are
associated with circulating cardiovascular biomarkers. Recently,
FW alterations have gained increasing attention because of
their capability of detecting early brain abnormalities in neu-
rodegenerative disease and vascular cognitive impairments.14,38

The findings suggest a substantial increase of FW, which is
most likely originating from extracellular water characteris-
tics,13 but independent of regional atrophy. However, the
precise factors leading to the observed increase of extracellular
water and hence increased FW signal in vascular-related cog-
nitive impairment are not yet clear. One possible explanation is
cerebrovascular-related damage.16,17,38 Our study thus pro-
vided an important support for this hypothesis by uncovering
the associations between brain FW and circulating cardiovas-
cular biomarkers. In dementia, concomitant cardiovascular
dysfunction may lead to ischemia (reduced blood supply to the

brain) and cardioembolic stroke (thrombus from the heart
dislodging went into the cerebral vasculature).4 These pro-
cesses in turn lead to vascular inflammation and endothelial and
blood-brain barrier (BBB) dysfunction,5,39,40 which may cause
FW increases. Moreover, these cerebrovascular dysfunctions
may further lead to circulating inflammatory cytokines and
other blood-borne mediators of neurotoxicity infiltrating re-
mote brain areas, causing global inflammation, widespread
microvascular burden, and brain tissue damage,6,41,42 and thus
further increase brain FW.16 However, future work is needed to
determine the temporal causality between these processes.

Of interest, we observed that higher cardiovascular biomarker
levels were related to higher FW in a region-specific pattern in
GM, which was in contrast to the widespread association in
WM. These findings are consistent with the previous clinical
observation that GM is less vulnerable to CeVD, possibly be-
cause GM receives more collateral circulation and has more
extensive blood supply than WM.43 Second, GM regions
closely linked with cardiovascular markers included the anterior
cingulate and somatosensory cortex, which are known to be
heart function–controlling brain regions.44 We can thus spec-
ulate that a vicious circle may occur in CeVD progression,
where cardiovascular-derived embolism or ischemia leads to
damage in the brain regions of heart controlling center, thus
leading to further derangement of cardiovascular function and
cognitive function.45 Future studies using refined cardiac
markers (i.e., cardiac imaging markers) could be performed to
test this hypothesis and provide further insights into the
mechanism of brain-heart interaction. Last, and of importance,

Figure 5 Effects of Circulating Cardiovascular Biomarker Levels on Longitudinal Executive Function and Memory Decline
Through Mediators

Schematic diagram of the path analyses. hs-cTNT
was inputted as a predictor. The mean WM FW
and mean GM FW derived from 7 Yeo’s intrinsic
networks were added as mediators (see parcel-
lations with colored boundary in the right bot-
tom). Rates of changes in executive and memory
domains over time (5 years) were treated as
outcomes. Numbers on the paths indicate stan-
dardized coefficients that were statistically sig-
nificant. DAN = dorsal attention network; DMN =
default mode network; ECN = executive control
network; FW = free water; GM = gray matter; hs-
cTnT = high-sensitivity cardiac troponin-T; SMN =
somatomotor network; SN/VA = ventral attention
network; WM = white matter.
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these GM regions overlapped with the canonical cognitive
brain networks including DMN, ECN, and SMN. This is
aligned with the previous work demonstrating that neurode-
generative disease and CeVD could lead to network-specific
dysfunction,23,25 for example, the DMN in AD while ECN and
SMNs in CeVD.20,21,28,46 Our findings suggested that FW al-
terations might be one of the early basis of brain network
degeneration, which is worth further investigation in combi-
nation with other disease pathology.

Previous studies have demonstrated associations of circulating
cerebrovascular biomarkers with cerebrovascular burden and
cognition.9 Higher FW were related to cognitive deficits and
longitudinal decline in dementia.14,15,17 Our study put the
pieces together by demonstrating that the effects of circulating
cardiovascular biomarkers on longitudinal cognitive decline
were mediated through higher FW in both WM and GM.
Critically, we found brain FW entirely mediated the associa-
tion of blood cardiovascular biomarkers with cognitive de-
cline, suggesting that FW could be a key brain proxy linking
the periphery cardiovascular dysfunction to cognitive decline.
According to the 2-hit vascular hypothesis of dementia, con-
comitant cardiac and peripheral endothelial dysfunction
would lead to damage to small arteries, arterioles, and brain
capillaries (e.g., hypoperfusion and BBB breakdown) and
neurovascular alterations through both vascular and AD
pathophysiology pathways (hits).3 Both pathways interact
and converge on these cerebrovascular dysfunction processes
and can independently or synergistically lead to neuronal
damage, synaptic loss, and neurodegeneration, resulting in
dementia and cognitive decline.47 FW increases in dMRI
capture these processes of cerebrovascular dysfunction,17,38,48

likely leading to the full mediation effect observed in this
study. Our results underscore the importance of cerebrovas-
cular function in the connection between heart and cognition.
Further longitudinal studies should take into account other
dementia-related pathologies such as β-amyloid, tau, or TAR
DNA–binding protein-43 to fully understand the intricate
interactions among these processes.

Furthermore, we demonstrated ECN FW mediated the in-
fluence of cardiovascular biomarkers on executive functioning
decline, while DMNFWplayed a role inmemory decline. These
findings were supported by prior studies that the DMN is im-
portant for episodic memory and DMN dysfunction is widely
implicated in AD dementia.21,23 In parallel, the ECN connec-
tivity alteration was associated with executive function deficits in
patients with CeVD.25 Such dissociable correspondence be-
tween cardiovascular-related network-specific GM FW abnor-
mality at baseline and longitudinal decline in cognition suggests
that cardiovascular-related cerebrovascular dysfunction may
target specific brain networks for specific cognitive domains.
Early cardiovascular changes might induce cerebral hypo-
perfusion, endothelial dysfunction, and ischemic damage in
specific brain networks, eventually causing BBB leakage and
neuroinflammation, which may manifest as higher GM FW.38

The reduced blood supply and entry of potentially harmful

compounds may cause further injury to axons and neurons
resulting in longitudinal cognitive dysfunction in domains sup-
ported by the targeted network.34 Moreover, with reference to
the 2-hit vascular hypothesis of dementia, the detected GM
patternmight also suggest ADpathophysiology could potentially
be more active in the DMN, underlying memory impairment,
while the vascular hit might be the leading pathway in the ECN,
underlying executive dysfunction. Future investigation could
combine blood cardiovascular biomarkers and a neuroimaging
scan to identify vascular abnormalities and brain network-specific
alterations to predict disease progression and domain-specific
cognitive decline.

There are several limitations of this study. First, our results were
based on diffusion imaging data obtained with a single shell.13

More advanced acquisitions including multi b values and FW
modeling method could further increase the sensitivity and
specificity of the derived measures and potentially tease apart
variousmicrostructural and vascular changes.49 Second, although
we performed visual quality control to minimize the possible
misalignment between the T1 and dMRI data, partial volume
with surrounding CSF cannot be completely ruled out; in other
words, brain atrophy may also affect the FW values in the GM.
To mitigate these concerns, we performed partial volume cor-
rection and controlled for TIV and regional atrophy. Besides, we
did not find any association of blood biomarkers with cortical
thickness. Moreover, although we accounted for age, sex, and
years of education in our analyses, the potential influence of
these demographics on brain measures cannot be ruled out.
Further investigation in a larger cohort with matching de-
mographics across different groups are necessary. Last, partici-
pants were recruited from memory clinics, which might be
confounded by selective survival bias. Although we have con-
trolled for a number of vascular risk factors, no physical activity
and alcohol consumption information was available for this co-
hort. More works in other clinical and community cohorts with
comprehensive lifestyle evaluation are needed.

There are 3 future directions. First, more advanced diffusion
imaging and FWmodels can be used to potentially tease apart
different microstructural and vascular changes. Second, given
the 2-hit vascular hypothesis, future work in animal models
and human studies is needed to determine the temporal
patterns (or even causality) of vascular damage, neurovascular
dysfunction, AD pathologies such as amyloid, and neuronal
dysfunction.47 It is also important to combine FW with other
biomarkers to determine the relative relevance of vascular
pathology to the overall multietiology picture. Third, further
developed, the new evidence on brain-heart interactions
provided in this study may pave the way for an effective
strategy of early detection and prediction of domain-specific
cognitive trajectory. Given that brain FW is a sensitive mea-
sure for early and mild vascular-related alteration,50 combin-
ing cardiovascular biomarkers with brain FW measurement
may help monitor response to pharmacologic and non-
pharmacologic therapies in vascular-related treatment of
dementia.
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In conclusion, we found higher circulating cardiovascular
marker levels were associated with higher WM FW in a
widespread pattern and higher GM FW in the DMN, ECN,
and SMN at baseline. Of importance, baseline FW in both
GM and WM fully mediated the association of cardiovascular
biomarker levels with cognitive decline over time. The asso-
ciation of blood markers with executive function decline was
mediated by higher FW in the ECN, while the same associ-
ation with memory decline was mediated by the DMN. In
other words, the effects of cardiovascular dysfunction proxied
by the blood biomarkers on the cognition may be accounted
by cerebrovascular pathophysiology detected by higher FW in
specific brain networks. Our results suggest that higher FW
could underlie the heart-brain interactions. Developed fur-
ther, assessment of FW in specific brain networks together
with circulating cardiovascular assays would be helpful for the
prediction and monitoring of cardio/CeVD progression and
domain-specific cognitive decline.
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