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Abstract
Background and Objectives
To evaluate whether plasma biomarkers of amyloid (Aβ42/Aβ40), tau (p-tau181 and
p-tau231), and neuroaxonal injury (neurofilament light chain [NfL]) detect brain amyloidosis
consistently across racial groups.

Methods
Individuals enrolled in studies of memory and aging who self-identified as African American
(AA) were matched 1:1 to self-identified non-Hispanic White (NHW) individuals by age,
APOE e4 carrier status, and cognitive status. Each participant underwent blood and CSF
collection, and amyloid PETwas performed in 103 participants (68%). Plasma Aβ42/Aβ40 was
measured by a high-performance immunoprecipitation–mass spectrometry assay. Plasma
p-tau181, p-tau231, and NfL were measured by Simoa immunoassays. CSF Aβ42/Aβ40 and
amyloid PET status were used as primary and secondary reference standards of brain amy-
loidosis, respectively.

Results
There were 76 matched pairs of AA and NHW participants (n = 152 total). For both AA and
NHW groups, the median age was 68.4 years, 42% were APOE e4 carriers, and 91% were
cognitively normal. AA were less likely than NHW participants to have brain amyloidosis by
CSF Aβ42/Aβ40 (22% vs 43% positive; p = 0.003). The receiver operating characteristic area
under the curve of CSF Aβ42/Aβ40 status with the plasma biomarkers was as follows: Aβ42/
Aβ40, 0.86 (95% CI 0.79–0.92); p-tau181, 0.76 (0.68–0.84); p-tau231, 0.69 (0.60–0.78); and
NfL, 0.64 (0.55–0.73). In models predicting CSF Aβ42/Aβ40 status with plasma Aβ42/Aβ40
that included covariates (age, sex, APOE e4 carrier status, race, and cognitive status), race did
not affect the probability of CSF Aβ42/Aβ40 positivity. In similar models based on plasma
p-tau181, p-tau231, or NfL, AA participants had a lower probability of CSF Aβ42/Aβ40
positivity (odds ratio 0.31 [95% CI 0.13–0.73], 0.30 [0.13–0.71], and 0.27 [0.12–0.64], re-
spectively). Models of amyloid PET status yielded similar findings.
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Discussion
Models predicting brain amyloidosis using a high-performance plasma Aβ42/Aβ40 assaymay provide an accurate and consistent
measure of brain amyloidosis across AA and NHW groups, but models based on plasma p-tau181, p-tau231, and NfL may
perform inconsistently and could result in disproportionate misdiagnosis of AA individuals.

Biomarkers of Alzheimer disease (AD) brain pathology are
used by research studies, clinical trials, and memory clinics for
a variety of indications, including to determine whether the
etiology of cognitive impairment is likely to be related to AD
or another cause. Amyloid PET is a well-established technique
to determine whether an individual has significant brain am-
yloidosis that could be causing or contributing to cognitive
impairment; however, amyloid PET is expensive and has
limited availability.1 CSF biomarkers are also highly accurate
predictors of brain amyloidosis and are less expensive, but
skilled clinicians are required to perform lumbar puncture
(LP) procedures, and some individuals perceive LPs as in-
vasive.2 Several commercial assays can be used to measure
concentrations of CSF β-amyloid (Aβ) peptide 42 (Aβ42),
Aβ40, total tau (t-tau), and tau phosphorylated at position
181 (p-tau181), and cutoffs consistent with brain amyloidosis
have been established.3-5

Biomarker cutoffs for brain amyloidosis have been defined in
cohorts largely comprised of non-Hispanic White (NHW)
individuals and then applied to all individuals. However,
several studies have found lower levels of CSF t-tau and
p-tau181 in African American (AA) individuals as compared
with NHW individuals, even after adjusting for factors such as
age, sex, APOE e4 carrier status, and cognitive impairment.6-9

Why AA individuals have lower levels of CSF t-tau and
p-tau181 is unknown and could be due to differences in
medical comorbidities, biological factors, or social determi-
nants of health.8,10,11 Regardless of the underlying reasons,
these differences have important implications for the utility of
CSF biomarkers. Applying biomarker cutoffs defined in
NHW to groups in which the biomarker has not been studied
could potentially subject the other groups to additional test-
ing, incorrect medical management, missed opportunities for
treatment with AD-specific therapies, and lower enrollment in
AD clinical trials.9,12 However, it is also highly problematic to
adjust the interpretation of medical tests based on race, es-
pecially given the heterogeneity represented within racial
groups and the dynamic nature of race because it is a social
rather than a biological construct.9,13,14 It would be prefera-
ble to use AD biomarkers that perform accurately and

consistently across racial and ethnic groups. Alternatively,
adjusting for the factors that underlie racial differences in AD
biomarkers (e.g., medical comorbidities) may be more valid
and generalizable across groups.

Over the past 3 years, there has been rapid development of
blood-based biomarkers for AD.15 The PrecivityAD test of-
fered by C2N Diagnostics, which includes highly precise
measurement of plasma Aβ42/Aβ40 andAPOE proteotype by
mass spectrometry, is now available for clinical use.16,17

Multiple plasma p-tau isoforms can also be used as biomarkers
of brain amyloidosis, including p-tau181,18,19 p-tau217,20-22

and p-tau231.23 Plasma neurofilament light chain (NfL) may
also be useful as a nonspecific marker of neuroaxonal injury.24

It is critical to evaluate whether these assays accurately and
consistently predict brain amyloidosis across various racial
and ethnic groups. In this study, one of the largest cohorts
of AA individuals with CSF biomarker and amyloid PET
information was used to examine the relationship of these
reference measures of brain amyloidosis with the C2N
Diagnostics PrecivityAD assay for plasma Aβ42/Aβ40 as well
as Simoa immunoassays for p-tau181, p-tau231, and NfL.

Methods
Participants
This study analyzed samples and data from the Charles F. and
Joanne Knight Alzheimer Disease Research Center (ADRC),
which includes one of the largest groups of AA individuals in
AD research who have undergone CSF collection or amyloid
PET. The cohort consists of community-dwelling older adults
recruited from the St. Louis area, including participants with
and without cognitive impairment, who enrolled in research
studies of memory and aging at Washington University in St.
Louis. Participants underwent clinical and cognitive assess-
ments using the Uniform Data Set (UDS)25 that includes the
Clinical Dementia Rating (CDR)26 and Mini-Mental State
Examination.27 The UDS includes the Hollingshead 2 factor
index of social position,28 which assigns a social class based on
the participant’s educational level and the occupation of the
head of the participant’s household. Presence or absence of

Glossary
AA = African American; Aβ = β-amyloid; AD = Alzheimer disease; ADRC = Alzheimer Disease Research Center; AUC = area
under the curve;CDR =Clinical Dementia Rating; IQR = interquartile range; LP = lumbar puncture;NfL = neurofilament light
chain; NHW = non-Hispanic White; OR = odds ratio; p-tau181 = tau phosphorylated at position 181; PiB = Pittsburgh
compound B; ROC = receiver operating characteristic; SUVR = standardized uptake value ratio; t-tau = total tau; UDS =
Uniform Data Set.
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hypertension or diabetes was noted by the clinician. Race and
sex were self-identified.

Participants with CSF biomarker information and adequate
aliquots of plasma available for analysis were considered for

inclusion. Each self-identified AA participant was matched 1:1
to a self-identified NHWparticipant by a computer algorithm.
Participants were matched by age at the time of plasma col-
lection (within 2 years), APOE e4 status (carrier or non-
carrier), and cognitive status at the time of plasma collection

Table 1 Characteristics of the Knight Alzheimer Disease Research Center Matched Cohort

Characteristics
African American
participants (n = 76)

Non-Hispanic White
participants (n = 76) p Adjusted p

Demographics

Age at CSF collection, y 68.4 (64.9–73.2) 68.4 (64.1–73.1) NS

Sex, n (% Female) 44 (58) 39 (51) NS

APOE «4 status, n (% carrier) 32 (42) 32 (42) NS

CDR 0/0.5/1 (% >0) 69/4/3 (9) 69/5/2 (9) NS

Years of education 16 (12–18) 16 (14–18) NS

Hollingshead index 2.0 (2.0–3.5) 2.0 (1.0–3.0) 0.002

Hypertension, yes/no/not reported (% yes of reported) 51/25/0 (67) 33/40/3 (45) 0.006

Diabetes, yes/no/not reported (% yes of reported) 21/55/0 (28) 4/69/3 (5) 0.0003

CSF/plasma to LP interval, y 0.11 (0.05–0.21) 0.08 (0.04–0.23) NS

CSF biomarker concentrations

CSF Aβ42, pg/mL 735 (544–971) 682 (516–883) NS NS

CSF Aβ40, pg/mL 9,490 (7,150–11,600) 10,100 (8,880–12,300) 0.07 NS

CSF Aβ42/Aβ40 0.0874 (0.0681–0.0935) 0.0719 (0.0477–0.0870) 0.0003 0.0001

CSF Aβ42/Aβ40 < 0.0673, n (%) 17 (22) 33 (43) 0.006 0.003

CSF total tau, pg/mL 212 (165–287) 290 (217–482) 0.0002 0.002

CSF p-tau181, pg/mL 31 (24.6–41.1) 38.0 (30.4–55.7) 0.002 0.0008

CSF NfL, pg/mL 644 (493–868)a 736 (542–973) 0.09 0.08

Plasma biomarker concentrations

Plasma Aβ42, pg/mL 41.9 (39.3–49.6) 40.9 (37.8–46.3) 0.06 0.03

Plasma Aβ40, pg/mL 409 (380–470) 425 (390–482) NS NS

Plasma Aβ42/Aβ40 0.1047 (0.0990–0.1101) 0.0963 (0.0904–0.1028) <0.0001 <0.0001

Plasma p-tau181, pg/mL 12.3 (10.2–16.2) 14.2 (10.6–19.3) NS NS

Plasma p-tau231, pg/mL 8.2 (4.4–11.3) 9.1 (6.6–13.1) 0.09 NS

Plasma NfL, pg/mL 11.1 (7.6–15.5) 11.8 (8.9–16.7) NS NS

Amyloid PET

Amyloid PET Centiloid 2.3 (−1.0–10.1)b 10.1 (0.0–33.0)c 0.01 0.02

Amyloid PET positive, n (%) 5 (10)b 21 (39)c 0.0008 0.003

Abbreviations: Aβ = β-amyloid; CDR = Clinical Dementia Rating; LP = lumbar puncture; NfL = neurofilament light; p-tau181 = tau phosphorylated at position
181; p-tau231 = tau phosphorylated at position 231.
Continuous values are presented asmedian (interquartile range). The significance of differences by self-identified racewas evaluatedwithWilcoxon rank sum
tests for continuous variables and χ2 or Fisher exact tests for categorical variables. The covariate-adjusted significance of racial differences was evaluated
using analysis of covariance models with biomarker concentrations as the outcome measure, race as the predictor variable, and the covariates of age, sex,
APOE e4 carrier status, and cognitive status. Plasma p-tau181 and NfL were transformed with the natural logarithm in covariate-adjusted models.
a n = 72.
b n = 49.
c n = 54.
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(cognitively normal [CDR 0] or cognitively impaired
[CDR >0]). If >1 NHW participant matched an AA partici-
pant, the participant with the closest age was selected.

Standard Protocol Approvals, Registrations,
and Patient Consents
Written informed consent was obtained from all participants
and their study partners. All procedures were approved by
Washington University’s Human Research Protection Office.

Genotyping
The APOE genotype was determined by genotyping rs7412
and rs429358 with TaqMan genotyping technology.29 Ge-
netic sex determined by sex chromosome–specific analysis
was concordant with gender in all individuals in this cohort.

CSF and Plasma Collection and Analysis
CSF and blood samples from each participant were collected at
a single session at approximately 8 AM following overnight
fasting as previously described.5,30 Concentrations of CSF
Aβ40, Aβ42, t-tau, and p-tau181 were measured by chemilu-
minescent enzyme immunoassay using a fully automated plat-
form (LUMIPULSE G1200; Fujirebio). CSF NfL was measured
via commercial ELISA kit (UMAN Diagnostics). Plasma Aβ42
and Aβ40 were measured in the C2N Diagnostics commercial
laboratory with the PrecivityAD immunoprecipitation–mass
spectrometry assay.16 Plasma p-tau181 and p-tau231 were

measured in the Clinical Neurochemistry Laboratory, University
of Gothenburg, using in-house Single molecule array (Simoa)
assays on an HD-X analyzer (Quanterix), as previously
described.19,23 Plasma NfL was measured with Quanterix Nf-
Light assay kits atWashingtonUniversity on aHD-X analyzer. All
assays were performed by personnel who were blind to partici-
pant information.

Amyloid PET
Participants underwent a dynamic scan with either florbetapir
(n = 48) or Pittsburgh compound B (PiB; n = 55) in co-
ordination with a structural MRI scan. Regional data from the
30–60 minutes postinjection window for PiB and the 50–70
minutes window for florbetapir were converted to standard-
ized uptake value ratios (SUVRs) using cerebellar gray as a
reference and partial volume corrected using a geometric
transfer matrix approach based upon the Freesurfer parcella-
tion.31 Values from regions where amyloid deposition occurs
early in AD were averaged together to represent mean cortical
SUVR, which was converted to Centiloid using previously
published equations.32,33

Statistical Analysis
The significance of differences by self-identified race were
evaluated with Wilcoxon rank sum tests for continuous vari-
ables and χ2 or Fisher exact tests for categorical variables. The
covariate-adjusted significance of racial differences were

Figure 1 Biomarkers by Race

Biomarkers of amyloid (A), tau (B), and
neuroaxonal injury (C) are shown by self-
identified race. The covariate-adjusted
significance of racial differences was
evaluated using analysis of covariance
models with biomarker concentrations
as the outcome measure, race as the
predictor variable, and the covariates of
sex, age, APOE e4 carrier status, and cog-
nitive status. Plasma tau phosphorylated
at position 181 (p-tau181) and neurofila-
ment light chain (NfL) were transformed
with the natural logarithm for analysis.
Point types denote the following: race:
red, African American (AA); black, non-
Hispanic White (NHW); cognitive status:
open circle, Clinical Dementia Rating
(CDR) 0; closed square, CDR >0. Aβ =
β-amyloid.
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evaluated using analysis of covariance models with biomarker
concentrations as the outcome measure, self-identified race as
the predictor variable, and including the covariates of age, sex,
APOE e4 carrier status, and cognitive status (cognitively
normal [CDR = 0] or cognitively impaired [CDR > 0]).
Models used natural logarithm transformed values for CSF
and plasma p-tau181 and NfL, which were positively skewed.
Models including the interaction between race and APOE e4
carrier status were also evaluated.

CSF Aβ42/Aβ40 status was chosen as the primary reference
standard for brain amyloidosis because all individuals in the
study had both CSF and blood collected at the same session,
whereas only a subcohort had an amyloid PET scan per-
formed within 2 years of CSF/blood collection. Positive CSF
Aβ42/Aβ40 was defined by a CSF Aβ42/Aβ40 <0.0673, a
cutoff that maximally distinguished amyloid PET status in an
overlapping cohort with a receiver operating characteristic
area under the curve (ROC AUC) of 0.97.34 Amyloid PET
positivity was previously defined as a mean cortical SUVR
>1.42 for PiB and >1.19 for florbetapir.32,35 Logistic re-
gression models were implemented with CSF Aβ42/Aβ40 or
amyloid PET status as the outcome measure and each plasma
biomarker as the predictor variable. Covariate adjusted
models included self-identified race, sex, age, APOE e4 carrier
status, and cognitive status. Models that in addition included
either the interaction between race andAPOE e4 carrier status
or race and plasma biomarker levels were evaluated. Differ-
ences between ROC AUCs were evaluated using the DeLong
test.36

Statistical analyses were implemented using SAS 9.4 (SAS In-
stitute Inc.). Plots were created with GraphPad Prism version
9.2.0 (GraphPad Software). All p values were from 2-sided tests,
and results were deemed statistically significant at p < 0.05.

Data Availability
Data are available to qualified investigators upon request to the
Knight ADRC (knightadrc.wustl.edu/Research/ResourceRe-
quest.htm).

Results
Participant Characteristics
Based on the inclusion criteria of CSF biomarker information
and adequate aliquots of plasma available for analysis, 79 AA
and 775 NHW participants were potentially eligible for the
study. Each AA participant was matched 1:1 to a NHW par-
ticipant by age, APOE e4 carrier status and cognitive status.
Three AA participants who could not be matched to a NHW
participant were not included in the study. The final study
cohort included a total of 152 participants (76 AA and 76
matching NHW) who contributed samples that underwent
measurement of plasma biomarkers (see Table 1 for cohort
characteristics). An amyloid PET scan was performed within 2
years of plasma collection in 49 AA (64%) and 54 NHW
(71%) participants (eTable 1, links.lww.com/WNL/B978).
All AA participants identified their ethnicity as non-Hispanic.

For both the AA and NHW groups, the median age was 68.4
years, 42% carried at least 1 APOE e4 allele (8% were e4

Figure 2 Relationship of Plasma Aβ42/Aβ40 With CSF Aβ42/Aβ40 and Amyloid PET

The relationship between plasma Aβ42/Aβ40 and CSF
Aβ42/Aβ40 (A) or amyloid PET Centiloid (C) was evaluated
by partial Spearman correlation and was adjusted for age,
sex, APOE e4 carrier status, self-identified race, and cogni-
tive status. Vertical dotted lines represent cutoff values for
amyloid positivity. PlasmaAβ42/Aβ40 for African American
(AA) andnon-HispanicWhite (NHW) groupswere evaluated
by CSF Aβ42/Aβ40 status (positive <0.0673) (B) or amyloid
PET status (D). Cutoff values for plasma Aβ42/Aβ40 with
the highest combined sensitivity and specificity for dis-
tinguishing amyloid status were selected and are denoted
by horizontal dashed lines. The receiver operating char-
acteristic area under the curve (ROC AUC), positive percent
agreement (PPA), and negative percent agreement (NPA)
are shown. Point types denote the following: race: red, AA;
black, NHW; cognitive status: open circle, Clinical Dementia
Rating (CDR) 0; closed square, CDR > 0.
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homozygotes), and 9% were cognitively impaired as defined by
a CDR>0. There was no difference in dementia severity by race
as measured by the CDR. Both the AA and NHW groups were
well-educated (median of 16 years of education), but the AA
group had a slightly lower social position than the NHW group
as measured by the Hollingshead 2-factor index of social po-
sition (median 2.0 [interquartile range (IQR) 2.0–3.5] vs 2.0
[IQR 1.0–3.0], respectively; p < 0.002). Because the AA and
NHW participants had no significant differences in years of
education, this suggests that the median occupational level of
the head of household in the AA group was lower (e.g., fewer of
the AA participants lived in households headed by executives/
major professionals). Compared with NHW individuals, AA
individuals were more likely to have hypertension (67% vs
45%; p = 0.006) or diabetes (28% vs 5%; p = 0.0003).

CSF and Plasma Biomarkers by Race
CSF Aβ42 and Aβ40 concentrations were not significantly
different between the AA and NHW groups (Table 1).
However, AA individuals had higher CSF Aβ42/Aβ40 (me-
dian 0.0874 [IQR 0.0681 to 0.0935] vs 0.0719 [0.0477 to
0.0870]; p < 0.0001) and lower amyloid PET Centiloid
(median 2.3 [IQR –1.0 to 10.1] vs 10.1 [0.0–33.0]; p = 0.02),
consistent with the AA group having lower average levels of
brain amyloidosis compared with the NHW group (Figure 1).
In the overall cohort, 22% of the AA and 43% of the NHW
groups had brain amyloidosis by CSF Aβ42/Aβ40 status (p =
0.003); in the subcohort with amyloid PET, 10% of AA and
39% of the NHW groups had brain amyloidosis by amyloid
PET status (p = 0.003). Plasma Aβ42 was only slightly higher
in the AA group (p = 0.03) and plasma Aβ40 did not vary by

racial group, but plasma Aβ42/Aβ40 was markedly higher in
the AA group (median 0.1047 [IQR 0.0990–0.1101] vs
0.0963 [0.0904–0.1028]; p < 0.0001), again consistent with
the AA group having lower average levels of brain amyloidosis
compared with the NHW group. CSF total tau and p-tau181
were lower in the AA group than the NHW group (p = 0.002
and p = 0.0008, respectively), but there were no statistically
significant differences in plasma p-tau181 and p-tau231 be-
tween racial groups. There was a trend towards lower CSF
NfL in AA compared with NHW individuals (p = 0.08), but
there was no difference in plasma NfL by racial group.

Plasma Biomarkers, CSF Aβ42/Aβ40 or Amyloid
PET Centiloid, and Race
Nonlinear associations between plasma biomarkers and CSF
Aβ42/Aβ40 or amyloid PET Centiloid were examined by
Spearman correlations, as depicted in Figures 2 and 3 and
eFigures 1–2, links.lww.com/WNL/B978 and summarized in
eTable 2. Of the plasma biomarkers, Aβ42/Aβ40 had the
strongest correlations with CSF Aβ42/Aβ40 (ρ = 0.52 [0.39 to
0.63]) and amyloid PET Centiloid (−0.30 [-0.10 to −0.47])
after adjustment for covariates. To examine the relationships
between the plasma biomarkers, brain amyloid, and race, bio-
marker concentrations were modeled as a function of CSF
Aβ42/Aβ40 status and included race, age, sex, APOE e4 carrier
status, and cognitive status as covariates (Table 2). More ab-
normal (lower) plasma Aβ42/Aβ40 was associated with NHW
race (p < 0.0001), male sex (p < 0.0001), and positive CSF
Aβ42/Aβ40 status (p < 0.0001). In contrast, more abnormal
(higher) plasma p-tau181 levels were associated with older age
(p < 0.0001), positive CSF Aβ42/Aβ40 status (p = 0.003), male

Figure 3 Relationship of Plasma p-tau181 With CSF Aβ42/Aβ40 and Amyloid PET

Plasma p-tau181 was transformed with the natural
logarithm for analysis. The relationship between
plasma p-tau181 and CSF Aβ42/Aβ40 (A) or amyloid
PET Centiloid (C) was evaluated by partial Spearman
correlation and was adjusted for age, sex, APOE e4
carrier status, self-identified race, and cognitive status.
Vertical dotted lines represent cutoff values for amy-
loid positivity. Plasma p-tau181 levels for African
American (AA) and non-Hispanic White (NHW) groups
were evaluated by CSF Aβ42/Aβ40 status (positive
<0.0673) (B) or amyloid PET status (D). Cutoff values for
plasma p-tau181 with the highest combined sensitivity
and specificity for distinguishing amyloid status were
selected and are denoted by horizontal dashed lines.
The receiver operating characteristic area under the
curve (ROC AUC), positive percent agreement (PPA),
and negative percent agreement (NPA) are shown.
Point types denote the following: race: red, AA; black,
NHW; cognitive status: open circle, Clinical Dementia
Rating (CDR) 0; closed square, CDR > 0.
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sex (p = 0.01), and impaired cognitive status (p = 0.02). More
abnormal (higher) p-tau231 levels were associated with impaired
cognitive status (p = 0.0009), older age (p = 0.01), and positive
CSF Aβ42/Aβ40 status (p = 0.03). More abnormal (higher)
plasma NfL levels were associated with older age (p < 0.0001)
and impaired cognitive status (p = 0.03). Similar models of
plasma biomarker levels including amyloid PET status rather
than CSF Aβ42/Aβ40 status yielded similar results except that
cognitive status was not a significant predictor in any model
(eTables 3–6); few participants with cognitive impairment had
amyloid PET data (4 of 103), limiting power to detect differ-
ences by cognitive status in these models. Models that included
the interaction between race and APOE e4 carrier status were
evaluated, but the interaction was not significant for any model
and therefore it was not included in the final analyses.

Correspondence of Plasma Biomarkers With
CSF Aβ42/Aβ40 and Amyloid PET Status
Prediction of CSF Aβ42/Aβ40 or amyloid PET status by
plasma biomarkers was evaluated by logistic regression anal-
yses, as depicted in Figures 2 and 3 and eFigures 1 and 2, links.
lww.com/WNL/B978, shown in eTables 7–11, and summa-
rized in Tables 3 and 4. Models predicting CSF Aβ42/Aβ40
status based on plasma biomarker levels had ROC AUCs as
follows: Aβ42/Aβ40, 0.86 (95% CI 0.79–0.92); p-tau181,
0.76 (0.68–0.84); p-tau231, 0.69 (0.60–0.78); and NfL, 0.64
(0.55–0.73). The amyloid probability score, a proprietary
modeled value provided by C2N Diagnostics that is based on
plasma Aβ42/Aβ40, APOE proteotype and age,17 had an
ROC AUC of 0.89 (0.84–0.95) with CSF Aβ42/Aβ40 status.
Comparisons of ROC AUCs showed that plasma Aβ42/Aβ40
had significantly better prediction of CSF Aβ42/Aβ40 status
compared with p-tau181, p-tau231, and NfL (p < 0.05, 0.004,
and <0.0001, respectively; Table 3).

Covariate adjusted models of CSF Aβ42/Aβ40 status in-
corporating each plasma biomarker and covariates (age, sex,
APOE e4 carrier status, race, and cognitive status) are sum-
marized in Table 4. The model based on plasma Aβ42/Aβ40
had an ROC AUC of 0.90 (0.85–0.96) (eTable 7, links.lww.
com/WNL/B978), which was superior to a model of cova-
riates alone (0.82 [0.74–0.89] (eTable 12); p = 0.006 for
difference in ROC AUCs). In the model of CSF Aβ42/Aβ40
status incorporating plasma Aβ42/Aβ40 and covariates, a
higher probability of CSF Aβ42/Aβ40 positivity was associ-
ated with APOE e4 carriers (odds ratio [OR] 5.6 [95% CI
2.0–16]; p = 0.001), older age in years (OR 1.12 [1.03–1.21];
p = 0.007), and cognitive impairment (OR 9.2 [1.9–46]; p =
0.007). Notably, in models incorporating plasma Aβ42/Aβ40
and covariates, race did not significantly affect correspon-
dence with CSF Aβ42/Aβ40 or amyloid PET status.

The covariate-adjustedmodel forCSFAβ42/Aβ40 status based
on p-tau181 had an ROC AUC of 0.85 (0.79–0.92) (Table 4
and eTable 9, links.lww.com/WNL/B978). In this model, a
higher probability of CSF Aβ42/Aβ40 positivity was associated
withAPOE e4 carriers (OR 5.7 [2.3–14]; p= 0.0002), cognitive

Table 2 Relationship Between Plasma Biomarkers, CSF
Aβ42/Aβ40 Status, and Covariates

Parameter Estimate SE p

Plasma Aβ42/Aβ40

Intercept 0.1052 0.0051 <0.0001

CSF Aβ42/Aβ40 status
(positive)

−0.008 0.0013 <0.0001

Race (African American) 0.0060 0.0011 <0.0001

Sex (female) 0.0044 0.0011 <0.0001

Age (y) −0.00010 0.00007 NS

APOE «4 status (carrier) −0.0009 0.0011 NS

Cognitive status (CDR >0) −0.0010 0.0019 NS

Ln (plasma p-tau181)

Intercept 1.267 0.311 <0.0001

CSF Aβ42/Aβ40 status
(positive)

0.239 0.079 0.003

Race (African American) −0.044 0.066 NS

Sex (female) −0.164 0.065 0.01

Age (y) 0.020 0.004 <0.0001

APOE «4 status (carrier) 0.017 0.068 NS

Cognitive status (CDR >0) 0.278 0.115 0.02

Plasma p-tau231

Intercept −1.655 4.474 NS

CSF Aβ42/Aβ40 status
(positive)

2.525 1.140 0.03

Race (African American) −0.970 0.946 NS

Sex (female) −0.985 0.940 NS

Age (y) 0.160 0.063 0.01

APOE «4 status (carrier) −0.190 0.985 NS

Cognitive status (CDR >0) 5.585 1.651 0.0009

Ln (plasma NfL)

Intercept −0.710 0.357 0.05

CSF Aβ42/Aβ40 status (positive) −0.015 0.091 NS

Race (African American) −0.091 0.075 NS

Sex (female) −0.052 0.075 NS

Age (y) 0.046 0.005 <0.0001

APOE «4 status (carrier) 0.092 0.079 NS

Cognitive status (CDR >0) 0.297 0.132 0.03

Abbreviations: Aβ = β-amyloid; CDR = Clinical Dementia Rating; NfL = neu-
rofilament light; p-tau181 = tau phosphorylated at position 181; p-tau231 =
tau phosphorylated at position 231.
Analysis of covariance models evaluated the effects of CSF Aβ42/Aβ40 sta-
tus (positive <0.0673), self-identified race, sex, age, APOE e4 carrier status,
and cognitive status on levels of each plasma biomarker. Plasma p-tau181
and NfL were transformed with the natural logarithm for analysis.
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Table 3 CSF Aβ42/Aβ40 or Amyloid PET Status as Predicted by Plasma Aβ42/Aβ40 and Covariates

Unadjusted model Covariate adjusted model

ROC AUC Biomarker p Versus plasma Aβ42/Aβ40 p ROC AUC Biomarker p Versus plasma Aβ42/Aβ40 p

Prediction of CSF Aβ42/Aβ40 status (n = 152)

Plasma Aβ42/Aβ40 0.86 (0.79–0.92) <0.0001 reference 0.90 (0.85–0.96) <0.0001 reference

Amyloid probability score 0.89 (0.84–0.95) <0.0001 0.05 0.91 (0.87–0.96) <0.0001 NS

Ln (plasma p-tau181) 0.76 (0.68–0.84) <0.0001 <0.05 0.85 (0.79–0.92) 0.007 NS

Plasma p-tau231 (pg/mL) 0.69 (0.60–0.78) 0.0002 0.004 0.85 (0.78–0.91) 0.01 0.07

Ln (plasma NfL) 0.64 (0.55–0.73) 0.008 <0.0001 0.81 (0.74–0.89) NS 0.005

Covariates alone NA NA NA 0.82 (0.74–0.89) NA 0.006

Prediction of amyloid PET status (n = 103)

Plasma Aβ42/Aβ40 0.86 (0.77–0.95) <0.0001 reference 0.89 (0.82–0.97) 0.0004 reference

Amyloid probability score 0.90 (0.82–0.97) <0.0001 NS 0.90 (0.84–0.96) 0.0006 NS

Ln (plasma p-tau181) 0.74 (0.63–0.84) 0.002 0.05 0.84 (0.75–0.92) 0.02 NS

Plasma p-tau231 (pg/mL) 0.69 (0.58–0.81) 0.004 0.02 0.84 (0.75–0.92) 0.01 NS

Ln (plasma NfL) 0.55 (0.43–0.67) NS <0.0001 0.82 (0.73–0.91) NS NS

Covariates alone NA NA NA 0.81 (0.72–0.90) NA 0.08

Abbreviations: Aβ = β-amyloid; AUC = area under the receiver operating characteristic curve; CDR = Clinical Dementia Rating; NfL = neurofilament light; p-tau181 = tau phosphorylated at position 181; p-tau231 = tau
phosphorylated at position 231; ROC = receiver operating characteristic.
Logistic regressionmodels evaluated prediction of CSF Aβ42/Aβ40 (positive <0.0673) or amyloid PET status by each plasmabiomarker alone (unadjustedmodels) or plasmabiomarkers and the covariates of self-identified race,
sex, age, APOE e4 carrier status, and cognitive status (adjustedmodels). The amyloid probability score is a proprietary modeled value that incorporates plasma Aβ42/Aβ40, age, and APOE proteotype. Plasma p-tau181 and NfL
were transformedwith the natural logarithm for analysis. For eachmodel, the ROC AUCwith 95%CIs is shown. The significance of each biomarker as a predictor in themodel (biomarker p ) and the difference between the ROC
AUC for the plasma Aβ42/Aβ40 model and other models (versus plasma Aβ42/Aβ40 p ) is shown.
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impairment (OR 7.7 [1.7–36]; p = 0.009), and older age in
years (OR 1.08 [1.00–1.15]; p = 0.04); AA race was associated
with a lower probability of positivity (OR 0.31 [0.13–0.73]; p =
0.007). Models of CSF Aβ42/Aβ40 or amyloid PET status
based on p-tau231 (eTable 10) or NfL (eTable 11) were also
evaluated and are summarized in Table 4.

A model of CSF Aβ42/Aβ40 status based only on covariates
demonstrated that AA race was associated with a lower prob-
ability of CSF Aβ42/Aβ40 positivity (OR 0.27 [0.12–0.64];
p = 0.003) (eTable 12, links.lww.com/WNL/B978). AA race
significantly decreased the probability of CSF Aβ42/Aβ40
positivity in models based on plasma p-tau181 (OR 0.31
[0.13–0.73]; p = 0.007), p-tau231 (OR 0.30 [0.13–0.71]; p =
0.006), or NfL (OR 0.27 [0.12–0.64]; p = 0.003) levels.
Consistent with these results, AA race decreased the proba-
bility of amyloid PET positivity in models including plasma
p-tau181 (OR 0.19 [0.06–0.63]; p = 0.007), p-tau231 (OR
0.17 [0.05–0.59]; p = 0.005), or NfL (OR 0.17 [0.05–0.55];
p = 0.003) levels (eTables 9–11, respectively). In contrast, race
did not affect the probability of CSF Aβ42/Aβ40 or amyloid
PET positivity associated with plasma Aβ42/Aβ40 (eTable 7).
Models of CSF Aβ42/Aβ40 status including only cognitively
normal individuals (91% of cohort) showed the same major
findings as models that included the entire cohort (eTable 13).
Models of CSF Aβ42/Aβ40 status were also evaluated that
incorporated either the interaction between race and APOE e4
carrier status or race and plasma biomarker levels, but neither
interaction was significant for any model and therefore the
interactions were not included in the final analyses.

Combining Plasma Biomarkers
Amodel of CSF Aβ42/Aβ40 status including levels of all plasma
biomarkers and covariates had an ROC AUC of 0.92
(0.88–0.96), which was not significantly different from the
ROC AUC of the model including Aβ42/Aβ40 as the only
plasma biomarker (eTable 14, links.lww.com/WNL/B978). In
the model with all plasma biomarkers, plasma Aβ42/Aβ40 was
the only biomarker that was a significant predictor (p < 0.0001):
plasma p-tau181, p-tau231, and NfL were not significant pre-
dictors of CSF Aβ42/Aβ40 after adjusting for the effects of
plasma Aβ42/Aβ40 and covariates. In a similar model of amy-
loid PET status, plasma Aβ42/Aβ40 and plasmaNfL levels were
both significant predictors (p = 0.0004 and p = 0.007, re-
spectively). In models of CSF Aβ42/Aβ40 or amyloid PET
status with all plasma biomarkers and covariates (including
plasma Aβ42/Aβ40), race was not a significant predictor.

Discussion
This study found that the C2N Diagnostics PrecivityAD
plasma Aβ42/Aβ40 assay more accurately classified CSF
Aβ42/Aβ40 or amyloid PET status compared with Simoa-
based assays for plasma p-tau181, p-tau231, and NfL in a
mostly cognitively normal cohort of matched AA and NHW

Table 4 CSF Aβ42/Aβ40 Status as Predicted by Plasma
Biomarkers and Covariates

Parameter Estimate SE p

Plasma Aβ42/Aβ40, ROC AUC 0.90 (0.85–0.96)

Intercept 13.0 4.7 0.005

Plasma Aβ42/Aβ40 (pg/mL) −220 46 <0.0001

Race (African American) 0.058 0.274 NS

Sex (female) 0.843 0.568 NS

Age, y 0.109 0.04 0.007

APOE «4 status (carrier) 0.865 0.269 0.001

Cognitive status (CDR>0) 1.11 0.41 0.007

Plasma p-tau181, ROC AUC 0.85 (0.79-0.92)

Intercept −8.69 2.71 0.001

Ln (plasma p-tau181) 1.53 0.57 0.007

Race (African American) −0.59 0.22 0.007

Sex (female) −0.21 0.44 NS

Age, y 0.072 0.035 0.04

APOE «4 status (carrier) 0.87 0.23 0.0002

Cognitive status (CDR>0) 1.02 0.39 0.009

Plasma p-tau231, ROC AUC 0.85 (0.78-0.91)

Intercept −6.95 2.50 0.006

Plasma p-tau231 (pg/mL) 0.098 0.040 0.01

Race (African American) −0.60 0.22 0.006

Sex (female) −0.37 0.43 NS

Age, y 0.096 0.034 0.004

APOE «4 status (carrier) 0.94 0.23 <0.0001

Cognitive status (CDR >0) 1.07 0.38 0.006

Plasma NfL, ROC AUC 0.81 (0.74-0.89)

Intercept −6.20 2.41 0.01

Ln (plasma NfL) −0.097 0.476 NS

Race (African American) −0.65 0.22 0.003

Sex (female) −0.50 0.42 NS

Age, y 0.109 0.040 0.007

APOE «4 status (carrier) 0.89 0.23 <0.0001

Cognitive status (CDR>0) 1.27 0.39 0.001

Abbreviations: Aβ = β-amyloid; AUC = area under the receiver operating
characteristic curve; CDR = Clinical Dementia Rating; NfL = neurofilament
light; p-tau181 = tau phosphorylated at position 181; ROC = receiver oper-
ating characteristic.
Logistic regression models evaluated prediction of CSF Aβ42/Aβ40 status
(positive <0.0673) by each plasma biomarker and the covariates of self-
identified race, sex, age, APOE e4 carrier status, and cognitive status.
Plasma p-tau181 and NfL were transformed with the natural logarithm for
analysis. For each model, the ROC AUC with 95% CI is shown.
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research participants. Self-identified race did not affect pre-
diction of CSF Aβ42/Aβ40 or amyloid PET status by plasma
Aβ42/Aβ40. However, AA individuals had a significantly
lower probability of CSF or amyloid PET positivity compared
with NHW in models incorporating plasma p-tau181,
p-tau231, or NfL levels, suggesting that predictive algo-
rithms for these assays would perform inconsistently across
racial groups and that applying cutoffs established in NHW
individuals to AA individuals could lead to disproportionate
misdiagnosis of AA.

Plasma biomarkers have been almost exclusively studied in
non-Hispanic White cohorts, with little data available on the
performance of these biomarkers in other groups. A recent
study of a multiracial cohort found good performance of
plasma p-tau217 in distinguishing clinical, pathologic, and
amyloid PET status, but performance of the assay in pre-
dicting amyloid PET status across racial groups could not be
ascertained because only 40 individuals had amyloid PET
data.37 Another study found that plasma p-tau181 and plasma
p-tau181/Aβ42 were associated with brain amyloidosis and
hippocampal atrophy in a Singaporean AD cohort with high
burden of cerebrovascular disease, but it did not investigate
potential plasma biomarker differences across racial groups.38

Plasma NfL has been studied in a large Latino cohort, but
amyloid PET data were only available in a relatively small
subset of participants.39 To reduce racial disparities in re-
search and clinical care, it is important to confirm that plasma
biomarker assays have accurate and consistent performance in
identifying amyloid status across racial and ethnic groups.

Comparing the absolute values of biomarkers corrected for
covariates may be misleading in evaluating which biomarkers
perform consistently across racial groups. For example, in this
study AA individuals had higher average plasma Aβ42/Aβ40
compared withNHW individuals, but this reflected lower levels
of brain amyloidosis in AA individuals and did not affect the
probability of CSF Aβ42/Aβ40 positivity associated with a
given plasma Aβ42/Aβ40 value. In contrast, plasma p-tau181
levels did not vary by race, but AA individuals were less likely to
be amyloid positive at a given plasma p-tau181 value.Without a
comparison to reference standards, investigators might have
concluded that plasma Aβ42/Aβ40 was more variable across
racial groups and that p-tau isoforms were more consistent,
when in fact plasma Aβ42/Aβ40 was accurately detecting dif-
ferences in brain amyloidosis by racial group. Confirming that
plasma biomarker assays have accurate and consistent perfor-
mance in identifying amyloid status across racial and ethnic
groups requires comparison with a reference standard, and not
just covariate-adjusted models of absolute levels.

Previous studies have found an inconsistent relationship be-
tween amyloid biomarkers and race. One study found that AA
individuals had higher measures of amyloid PET40; another
recent study found the opposite result.12 Some studies have
found no differences in CSF Aβ42 levels by racial group,6-8 but
the current findings demonstrate that CSF Aβ42 alone may not

reveal significant racial differences that are apparent when CSF
Aβ42/Aβ40 is evaluated. The inconsistent relationship between
race and amyloid biomarkers could reflect variation in re-
cruitment methods: NHW and AA individuals are often
recruited differently (e.g., NHW are more often referred by
health care providers and AA individuals aremore often referred
by community contacts).41,42 Recruitment differences could
result in racial groups having significantly different comorbid-
ities, social determinants of health, or frequencies of brain am-
yloidosis. Potential differences in brain amyloidosis by racial
group again suggest that comparison of plasma biomarkers with
a reference standard, rather than comparison of absolute values,
may be more helpful in establishing which plasma biomarker
assays are accurate and consistent across racial groups.

One important issue in the fluid biomarker field is that dif-
ferent assays for plasma analytes have widely varying perfor-
mance. A recent head-to-head comparison of 8 different
plasma Aβ42/Aβ40 assays found ROC AUCs with CSF
Aβ42/Aβ40 status ranging from a maximum of 0.86 for the
Washington University assay that is the basis for the C2N
assay used in this study down to a minimum of 0.69 for some
immunoassays (0.50 is chance alone).43 In another head-to-
head comparison study, different p-tau assays yielded some-
what different findings, even for the same p-tau isoform.44 The
differences in assay performance complicate comparisons of
the relationship of different biomarker analytes to factors such
as race. For example, it is unclear whether the probability of
CSF Aβ42/Aβ40 or amyloid PET positivity would be affected
by race in models incorporating plasma p-tau181, p-tau231, or
p-tau217 measured with higher performing assays (e.g., ROC
AUC of >0.85 with CSF Aβ42/Aβ40 or amyloid PET status).
Performance of plasma assays may vary markedly in pre-
diction of brain amyloidosis depending on the study cohort.
For example, the p-tau181 assay used in the current study
performed very well in predicting amyloid PET status in a
cohort including both cognitively normal and cognitively
impaired individuals (ROC AUC 0.88),19 but the perfor-
mance was lower when predicting amyloid PET status in
cognitively normal individuals (ROC AUC 0.82).45 Overall,
use of consistently high-performing assays is needed to make
accurate conclusions about comparative associations of
biomarkers.

Although this study made use of one of the largest AD re-
search cohorts with CSF and amyloid PET data, there are
major limitations in the conclusions. Individuals enrolled in
this study were primarily from the greater St. Louis metro-
politan area and individuals from other geographic regions
may vary in key characteristics such as medical comorbidities
or social determinants of health. The very small number of
individuals with cognitive impairment (7 of 76 in each group)
was not sufficient to allow analysis of the relationships be-
tween cognitive impairment, race, and biomarker levels. This
study of 76 matched pairs of individuals, in which 6 variables
had significant effects, was also not sufficiently powered to
evaluate the underlying reasons for the racial differences. The
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Hollingshead index of social position demonstrated that AA
individuals had a slightly lower social position compared with
NHW individuals. However, this measure does not capture the
complex social factors that may underlie biomarker differences
between the groups. AA individuals had a higher rate of hy-
pertension and diabetes compared with NHW individuals, but
the relatively small cohort did not permit a detailed in-
vestigation of these effects. For example, only 4 NHW indi-
viduals had diabetes, which does not permit analysis of race by
diabetes interactions. Although this study is insufficiently
powered or does not have the data available to answer many
important questions, it does document racial differences in
plasma biomarkers that could potentially lead to clinical mis-
diagnosis, bias clinical trials that use a biomarker cutoff for
inclusion,12,46 and affect interpretation of biomarkers as a sec-
ondary end point. These findings should encourage investiga-
tors to evaluate the performance of plasma biomarker assays in
diverse cohorts. This report strengthens the justification for the
creation of large, diverse cohorts that are adequately powered
to evaluate the underlying reasons for racial differences.

It is critical to understand that biomarker differences associ-
ated with race likely reflect differences in medical comorbid-
ities, social determinants of health, or the effects of systemic
racism rather than inherent biological differences.10 For ex-
ample, in this study cohort there were differences in the rates
of hypertension and diabetes by racial group, and recent work
has demonstrated that major medical comorbidities such as
heart and kidney disease may affect plasma biomarker levels.47

AD research cohorts have traditionally not collected detailed
information about social determinants of health such as eco-
nomic stability, access to healthy foods, neighborhood safety,
and quality of education that may be associated with de-
mentia; the importance of these factors is now gaining greater
recognition.48 The greater accessibility and acceptance of
blood-based AD biomarkers may enable creation of larger
cohorts and increased inclusion of groups, such as AA indi-
viduals, that have been underrepresented in AD biomarker
studies.49 Much larger longitudinal studies of diverse cohorts
are needed to evaluate the intersection of race, AD bio-
markers, cognitive impairment, medical comorbidities, and
social determinants of health.50 Improved understanding of
these complex factors will enable more accurate AD diagnosis
and improve patient care for all groups.
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