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Concepción Sierra-Córcoles, MD, Sergi Beltrán, PhD, Marta Gut, PhD, Elida Vázquez, MD,

Mireia del Toro, MD, PhD, Mónica Troncoso, MD, PhD, Luis A. Pérez-Jurado, MD, PhD,
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Abstract
Background and Objectives
Genetic white matter disorders (GWMD) are of heterogeneous origin, with >100 causal genes
identified to date. Classic targeted approaches achieve a molecular diagnosis in only half of all
patients. We aimed to determine the clinical utility of singleton whole-exome sequencing and whole-
genome sequencing (sWES-WGS) interpreted with a phenotype- and interactome-driven prioriti-
zation algorithm to diagnose GWMD while identifying novel phenotypes and candidate genes.

Methods
A case series of patients of all ages with undiagnosed GWMD despite extensive standard-of-care
paraclinical studies were recruited between April 2017 and December 2019 in a collaborative
study at the Bellvitge Biomedical Research Institute (IDIBELL) and neurology units of tertiary
Spanish hospitals. We ran sWES and WGS and applied our interactome-prioritization algorithm
based on the network expansion of a seed group of GWMD-related genes derived from the
Human Phenotype Ontology terms of each patient.

Results
We evaluated 126 patients (101 children and 25 adults) with ages ranging from 1 month to 74
years. We obtained a first molecular diagnosis by singleton WES in 59% of cases, which
increased to 68% after annual reanalysis, and reached 72% after WGS was performed in 16 of
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Bellvitge and Hospitalet de Llobregat, Universitat de Barcelona; Institut de Recerca Pediàtrica (R.A., M.O., A.G.-C.) andMolecular and Genetics Medicine Section (J.A.), Hospital Sant Joan de Déu
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the remaining negative cases. We identified variants in 57 different genes among 91 diagnosed cases, with the most frequent
being RNASEH2B, EIF2B5, POLR3A, and PLP1, and a dual diagnosis underlying complex phenotypes in 6 families, under-
scoring the importance of genomic analysis to solve these cases. We discovered 9 candidate genes causing novel diseases and
propose additional putative novel candidate genes for yet-to-be discovered GWMD.

Discussion
Our strategy enables a high diagnostic yield and is a good alternative to trio WES/WGS for GWMD. It shortens the time to
diagnosis compared to the classical targeted approach, thus optimizing appropriate management. Furthermore, the interactome-
driven prioritization pipeline enables the discovery of novel disease-causing genes and phenotypes, and predicts novel putative
candidate genes, shedding light on etiopathogenic mechanisms that are pivotal for myelin generation and maintenance.

The advent of next-generation sequencing (NGS) in clinical ap-
plications (especially targeted sequencing panels and whole-exome
sequencing [WES]) has increased the diagnostic yield of hereditary
neurologic diseases with high genetic heterogeneity and low mu-
tational burden.1-4 Genetic white matter disorders (GWMD) are a
heterogeneous group of diseases with anMRI pattern suggestive of
a genetic etiology, encompassing both leukodystrophies and ge-
netic leukoencephalopathies.5,6 The classic combined MRI, bio-
chemical, and target gene-based approach leaves approximately half
of patients with GWMD without a genetic diagnosis.7-10 In these
undiagnosed cases, trio WES followed by whole-genome se-
quencing (WGS) allowed a diagnosis in 62% of the cases in a
recent study on a cohort of 71 pediatric patients.4,11

Despite continuous advances, the analysis of NGS data poses the
challenge of variant selection and interpretation, which is espe-
cially relevant for singleton exomes, or when there is no possibility
to perform family cosegregation/linkage studies. WES genotypes
yield approximately 500–1,000 variants per individual, after fil-
tering by frequency below 1% and deleteriousness. Hence,
establishing a prioritization system based on the patient’s
phenotype12,13 or gene interaction networks14-17may prove useful
to improve rapid selection of candidate variants.

We describe 126 families with patients displaying GWMD ana-
lyzed by singleton WES–WGS (sWES-WGS). We interpret ge-
netic data by integrating standardized phenotypic data in Human
Phenotype Ontology (HPO) terms, as well as interaction and
functional network information to facilitate the identification of
causal genes and enable novel disease-gene discovery.

Methods
Patient Recruitment
Study participants were identified at child and adult neurology
units from several tertiary hospitals around Spain from April 2017

to December 2019. They were pediatric and adult patients with
clinical and MRI patterns consistent with a GWMD defined as
symmetrical, confluent white matter involvement, in absence of
perinatal or vascular complications or suggestive of an autoim-
mune process. A molecular diagnosis could not be established by
the referring physicians despite applying standard-of-care para-
clinical studies (including mainly MRI, metabolic, neurophysio-
logic, and genetic studies such as array comparative genomic
hybridization [aCGH], targeted Sanger sequencing, or NGS gene
panels). Clinical information, MRIs, and samples were collected
by the Neurometabolic Diseases laboratory of Bellvitge Bio-
medical Research Institute (IDIBELL) and although strict filtering
of cases by a neuroradiologist focused on leukodystrophies was
not performed, re-evaluation by a team of experienced child and
adult neurologists and neuroradiologists under the URD-Cat
initiative for neurologic undiagnosed disorders was made be-
fore inclusion. This clinical team was driving the diagnostic
process and exchanged information with the referring clinicians
when required, both pre- and postvariant calling. MRI pattern
was classified according to previous published articles.18,19

Standard Protocol Approvals, Registrations,
and Patient Consents
Written informed consent for genetic testing and publication
was obtained by the parents or legal guardians of each patient
at each site. The ethics committee of IDIBELL approved the
study with CEIC PR076/14.

See Supplemental Methods for NGS, variant calling and clas-
sification, functional validation, and the interactome-driven
gene prioritization method.

Data Availability
Data not provided in the article because of space limitations
may be shared (anonymized) at the request of any qualified
investigator for purposes of replicating procedures and results.

Glossary
aCGH = array comparative genomic hybridization; ACMG = American College of Medical Genetics and Genomics; CNV =
copy number variant; GO = Gene Ontology; GWMD = genetic white matter disorders;HPO = Human Phenotype Ontology;
NGS = next-generation sequencing; PBMC = peripheral bloodmononuclear cells; sWES = singleton whole-exome sequencing;
VUS = variants of uncertain significance; WES = whole-exome sequencing; WGS = whole-genome sequencing.
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Results
Clinical Data
We recruited 126 families with an undiagnosed GWMD.
Based on cranial MRI findings, 86 cases (68%) were classi-
fied as non-hypomyelinating, whereas 40 of the cases
showed a hypomyelinating picture. The index cases included
50 female and 76 male patients, with ages ranging from 1
month to 74 years (median 10.3 years). The age at onset
ranged from the first month of life to 72 years (median 1
year); age was lower than 18 years in 101 cases (80%) and
higher in 25. The median evolution of disease before WES
testing was 6.3 years (1 month–34 years), and it was longer
than 10 years in 37% of patients. Consanguinity was repor-
ted in 18 families (14%). Clinical characteristics, MRI pat-
terns, studies performed, and sWES-WGS results of every
patient are summarized in Table 1 and eTable 1, links.lww.
com/WNL/B741.

Diagnostic Yield of WES andWGS in a Cohort of
Patients With GWMD
All the patients were initially studied by WES. The first
diagnostic rate was 74/126 (59%), which increased to 86/
126 cases (68%) after a subsequent reanalysis 12–24
months later. The reasons for this increase in yield were
attributed to variants not initially identified because of fil-
tering issues (3 cases); variants located in noncoding re-
gions (3 cases); pipeline update/technical issues (2 cases);
and newly reported disease-causing genes (3 cases). Next,
we performed WGS in 16 of the remaining 38 negative
cases, prioritized by availability of DNA from proband and
parents, and solved 5 more cases involving intronic variants
or 39 UTR variants.

This approach allowed us to identify 9 novel candidate genes,
for which we gathered additional patients with very similar
phenotypes through collaboration with international Leuko-
dystrophy Reference Centers and the platform Gene-
Matcher.20 We functionally validated and reported 2 novel
disease genes (DEGS121 and PI4KA22) in 2 families each,
whereas the other 5 validated cases are in preparation. Two
more candidate genes are awaiting additional patients while
functional studies are ongoing.

Overall, we obtained a positive genetic diagnosis in 91 out of
126 GWMD cases (72%) (Figure 1, eFigure 1, and eTables 1
and 2, links.lww.com/WNL/B741). The diagnostic rates by
age group were 77% in those with onset before 3 years, 73%
in those with onset between 3 and 18 years, and 60% in the
adult-onset group (Figure 1D). Considering the MRI pat-
tern, the diagnostic rate was 57/86 (66%) in the non-
hypomyelinating group and 34/40 (85%) in those with
hypomyelination. Following the classification proposed in
Vanderver et al.,5 46 (51%) of the diagnosed families had
variants in genes associated with “canonical or classic leu-
kodystrophies,” and the remaining 45 (49%) had variants in
genes associated with “genetic leukoencephalopathies.”

For the 33 cases that remained undiagnosed after WES/WGS,
we noted a trend towards adulthood onset (30% of unsolved
cases were adults vs 16% of adults in solved cases), cystic lesions

Table 1 Main Clinical Features of the 126 Index Cases

N %

Sex

Female 50 40

Male 76 60

Age at onset, y

<3 86 68

3–18 15 12

>18 25 20

Consanguinity 18 14

Main clinical features

Motor symptoms

Pyramidal 94 74

Extrapyramidal 34 27

Hypotonia 15 12

GDD/ID/cognitive decline 91 72

ASD/behavior/psychiatric manifestations 21 16

Cerebellar 42 33

Epilepsy 36 28

Ophthalmologic 55 43

Predominant MRI pattern

Hypomyelination 40 31

Nonhypomyelination

Periventricular 49 39

Diffuse 19 15

Frontal 12 9

Multifocal 3 2

Parieto-occipital 2 1

Cerebellar 2 1

Complementary examinations

Metabolic studies 116 92

Neurophysiologic studies 99 78

Karyotype/aCGH/NGS panel 65 51

Targeted genetic studies 65 51

Total cases 126

Abbreviations: aCGH = array comparative genomic hybridization; ASD =
autism spectrum disorder; GDD = global developmental delay; ID = in-
tellectual disability; NGS = next-generation sequencing.
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onMRI (12% of undiagnosed cases vs 5% in solved cases), and
absence of consanguinity (97% nonconsanguineous in un-
solved vs 82% in solved cases).

Although genetic heterogeneity in our cohort was very high,
some genes were found to be more frequently mutated, in-
cluding EIF2B5, POLR3A, and RNASEH2B, in 6 families
each, and PLP1 variants in 5 families (eTable 3, links.lww.
com/WNL/B741). New phenotypes were identified in 2
cases, atypical forms of presentation in 7, and 6 more cases
were complex, blended phenotypes with variants in more than

1 gene (see Figure 2, eTable 4, and eResults for clinical
summaries). Moreover, several cases with variants in the
classical spastic paraplegia genes SPG11 and CYP2U1 pre-
sented clear white matter involvement, as shown in Figure 3.

According to the American College of Medical Genetics and
Genomics (ACMG)/Association for Molecular Pathology
guidelines,23-25 86 out of the 91 diagnosed cases were classi-
fied as definitively diagnosed with pathogenic or likely path-
ogenic variants. In 14 of these 86 cases, the functional
validation converted variants of uncertain significance (VUS)

Figure 1 Diagnostic Process Diagram and Diagnostic Yield

(A) Number of cases included in the study and
diagnostic process. (B) Global, whole-exome se-
quencing (WES), and whole-genome sequencing
(WGS) diagnostic yield. (C) Percentage of di-
agnosis in the firstWES analysis, obtained byWES
reanalysis and byWGS. (D) Diagnostic percentage
according to age.
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into pathogenic or likely pathogenic variants. We analyzed the
effect of 8 variants on splicing using cDNA sequencing (from
RNA derived from peripheral blood mononuclear cells
[PBMC] or fibroblasts) or minigene splicing assay26 (n = 3).
The minigene assays were instrumental to confirm the path-
ogenic role of an intronic variant inMLC1 (c.597 + 37C > G),
a gene not expressed in PBMC or fibroblasts, and another

intronic variant in EIF2B5 (c.1156 + 13 G > A), which led to a
mild form of ovarioleukodystrophy.26 We also performed tar-
geted lipidomics, which proved a pathogenic role for variants in
genes related to lipid metabolism such as ACER3,DEGS1,21 and
PI4KA,22 together with qRT-PCR, Western blots, or immuno-
fluorescence as required (eTable 5, links.lww.com/WNL/
B741). In other cases that were not amenable to experimental

Figure 2 MRI Findings in Patients With New/Atypical and Blended Phenotypes

(A) LNF-48, 5 years. PARS2; p.Arg186Gly/
p.Lys187Arg (COMP HTZ). Periatrial white
matter (WM) hyperintensity (red arrows)
with frontal-parietal atrophy, ven-
triculomegaly, and thin corpus callosum
(arrowheads) (axial T2 fluid-attenuated
inversion recovery [FLAIR], sagittal T1-
weighted images). (B) LNF-29, 10months.
PNPT1; p.Ala507Ser (HMZ). Bilateral per-
iatrial and temporal anterior subcortical
WM hyperintensities (red arrows) with
temporal cystic lesions (arrowheads) (ax-
ial T2 and coronal T2 FLAIR-weighted im-
ages). (C) LNF-47, 2years. POLR3A; c.1771-
7C > G/p.Leu1129 (COMP HTZ). Optic ra-
diation mild WM hyperintensity (red ar-
rows), striatal atrophy and hyperintensity
(arrowheads), and superior cerebellar
peduncles hyperintense signal (asterisks)
(axial T2 images). (D) LNF-85, 48 years.
PSEN1; p.Thr350Ile (HTZ). MRI showed
diffuse WM hyperintensities (red arrows)
with corpus callosumandcortical atrophy
(arrowheads) (axial T2 and sagittal T1
FLAIR images). (E) LNF-88, 13 years.GFPT1;
p.Asp296Val (HMZ). Axial T2 hyper-
intensities involving deep cerebral WM
(red arrows), cerebellar peduncles (white
arrows), and middle blade of corpus cal-
losum (arrowheads), sparing subcortical
WM (axial T2 and sagittal T1-weighted
images). (F) LNF-114, 5 months. SCN8A;
p.Val409Met (HTZ). Important myelina-
tion delay, thin corpus callosumand signs
of cerebral and cerebellar atrophy (axial
andsagittal T1-weighted images). (G) SPG-
25, 44 years. SOX10; p.Tyr83Asp (HTZ).
Periventricular WM signal abnormality,
sparing U fibers (red arrows), and thin
isthmus of the corpus callosum (arrow-
head) (axial T2-FLAIR and sagittal T1
weighted images). (H) LNF-40.0, 13 years.
CYP2U1; p.Arg178Thr (HMZ)andLNF-40.4,
15 years. PAH; p.Thr380Met (HMZ). Peri-
ventricular WM hyperintensities (red ar-
rows) (axial T2 weighted images). (I) LNF-
56, 15 years. POLR3A; p.Cys724Tyr/
p.Pro705Ala (COMP HTZ) and CACNA1A;
p.Tyr546Ter (HTZ). Periventricular sym-
metric heterogeneous WM hyper-
intensities (red arrows) and hypointensity
in globus pallidus (arrowheads), thalamic
anterolateral nuclei (asterisks), optic radi-
ations, and pyramidal tracts, with mild
atrophy of the cerebellar superior vermis
(white arrow) (axial T2 and sagittal T1-
weighted images). (J) LNF-89.3, 15 years.
CP; p.Gly868GlufsTer26 (HMZ)/NDUFS1;
p.Ser701Asn (HTZ). Periventricular sym-
metric T2 hyperintensity with cystic de-
generation and pyramidal tract
involvement (red arrows) and corpus cal-
losum atrophy. Accumulation of para-
magnetic material in the substantia nigra
(asterisks) (axial T2-FLAIR and axial sus-
ceptibility-weighted imaging).

e916 Neurology | Volume 98, Number 9 | March 1, 2022 Neurology.org/N

http://links.lww.com/WNL/B741
http://links.lww.com/WNL/B741
http://neurology.org/n


validation (5 remaining until 91), we reported out VUS highly
compatible with the clinical and MRI picture and segregation
and were considered solved by expert assessment.

Among the 91 cases diagnosed, 60 harbored biallelic mutations
(31 homozygous; 16 of them in consanguineous families), 22
in an autosomal dominant mode (12 de novo), and 7 X-linked
(5 of them de novo), whereas 2 cases had mutations in more
than 1 gene with different inheritance patterns (1 with auto-
somal dominant and autosomal recessive inheritance; 1 auto-
somal dominant and X-linked) (eFigure 1, links.lww.com/
WNL/B741). Segregation by Sanger was performed in all but 8
patients due to the unavailability of parental samples. We
found several variants more than once in our patients: the
RNASEH2B p.Ala177Thr variant in 6 independent families
(frequency: 0.001306 in gnomAD [v2.1.1])27; the EIF2B5
p.Leu106Phe variant (frequency: 0.00004943 in gnomAD
[v2.1.1]) in 2 independent families and the EIF2B5 p.Arg113His
variant (frequency: 0.00001647 in gnomAD [v2.1.1])28 in 5
families; and the SPG11 frameshift variant p.Met245Valfs*2
twice independently (frequency: 0.0001071 in gnomAD
[v2.1.1]).29

In addition to single-nucleotide variants and indels, we
detected a pathogenic copy number variant (CNV) in 4 cases
(4.4%) by WES (eTable 6, links.lww.com/WNL/B741): a
6930 Kb 1p36 heterozygous deletion in LNF-36 and validated
by aCGH (eFigure 2), a 117 Kb duplication in 5q including
HNRNPH1 and RUFY1 genes in LNF-105,30 a 60.4 Kb du-
plication containing LMNB1 in LNF-34, and a 21.3 Kb ho-
mozygous deletion encompassing TANG O 2 in LNF-97.31

We validated the last 3 CNVs by Q-PCR (eTable 6). We also
identified a uniparental disomy of maternal origin of chro-
mosome 6 in LNF-68, harboring a loss-of-function homozy-
gous variant in a novel candidate gene that was highly ranked
by our prioritization method (in preparation).

An added value of our study is that 73 of the 123 identified
variants had not been previously reported in the literature,
Human Gene Mutation Database (public access), or ClinVar
databases (eTable 7, links.lww.com/WNL/B741).

Management Implications of a
Positive Diagnosis
Diagnosis allowed us to improve clinical management in 29
cases (eTable 1, links.lww.com/WNL/B741). In 22 of them,
it led to the consideration of a specific treatment option for
the disease, such as hematopoietic stem cell transplant for
Krabbe disease (LNF-18, SPG-72) and hereditary diffuse
leukoencephalopathy with spheroids (LNF-6, LNF-16, LNF-
70, LMSR), dietary management for phenylketonuria (LNF-
40.4), or pyridostigmine for myasthenic syndrome caused by
GFPT1 (LNF-88). In other cases, diagnosis led to an im-
provement in patient follow-up, such as screening for the
appearance of tumors in PTEN (LNF-109) or preventative
measures for head trauma and infections in patients with
vanishing white matter disease. Finally, we identified and
reported incidental findings (according to Kalia et al.32) in 2
patients: a pathogenic variant in the MYBPC3 gene
(p.Trp792ValfsTer41) in SPG-14 and in SMAD3 (Loeys-
Dietz syndrome) (p.Val363ThrfsTer3) in LNF-48. In both
cases, cardiologic follow-up will ensue, with cranial magnetic
resonance angiography and orthopedic controls in the second
case.

GWMD Expanded Network
Starting with a seed list of 843 genes that are causative or
associated with GWMD according to OMIM, we built a
protein interactome network based on the principle that
physical and functional interacting genes may account for
related biological processes and cause similar diseases. We
developed a prioritization method that identifies the most
likely disease-causing genes associated with each patient’s
phenotype (standardized in HPO33 terms) using a global
protein human interactome network built with functional and
physical interactions, represented by 20.146 genes (see Sup-
plemental Methods and Results [eTables 8–11, links.lww.
com/WNL/B741]).14 We applied this prioritization tool to
the respective clinical description in HPOs of the 843 proteins
associated with GWMD to build a GWMD interactome or
expanded network, resulting in 1,530 proteins and 18,288
interactions (Figure 4). To evaluate the functional signature
of these 1,530 proteins, we performed an enrichment analysis

Figure 3 MRI of Selected Cases With Variants in Hereditary Spastic Paraparesis Genes and White Matter Involvement

T2 hyperintensity in the bilateral peri-
ventricular whitematter. (A, D) Axial T2
images. (B, C) Axial T2 fluid-attenuated
inversion recovery images.
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of the Gene Ontology (GO) terms (eTables 8–10). In line
with the hypothesis that genes associated with similar dis-
eases may converge towards specific biological pathways,
major modules emerged, which are involved in the patho-
physiology of GWMD abnormalities: (1) the mitochon-
drial oxidative phosphorylation (OXPHOS) system (e.g.,
NADH-ubiquinone oxidoreductase Fe-S protein 1;
NDUFS1), (2) the lysosome (e.g., the galactosylceramidase
enzyme; GALC), (3) the peroxisome (peroxins) (e.g.,
peroxin 6; PEX6), (4) the metabolism of ribonucleotides
(e.g., ribonuclease H2 subunit B; RNASEH2B), and (5) the

purine metabolism pathway with RNA polymerases I and III
(e.g., RNA polymerase III subunit A; POLR3A). Among the
1,530 proteins, we identified (besides the 843 GWMD seed
proteins) (1) 587 proteins associated with disease but not yet
with GWMD and (2) 100 novel candidates that were not pre-
viously associated with GWMD or any disease (eTable 11). Of
particular interest among these last 100 proteins, we highlight
(1) the delta 4-desaturase sphingolipid 1 (DEGS1) in patients
with LNF-41 and LNF-42 (Figure 4B), causing hypomyelinating
leukodystrophy 18 (HLD18, OMIM #615843),21 (2) the
phosphatidylinositol 4-kinase alpha (PI4KA) recently associated

Figure 4 GWMD Expanded Interactome

(A) The genetic white matter disorder
(GWMD) seeds + expanded network was
generated by the network prioritization
tool, resulting in 1,530 proteins. The seed
genes known to be mutated in GWMD
are shown in yellow circles, disease genes
notpreviouslyassociatedwithGWMDare
shown in green, and new GWMD candi-
dates are shown in blue. Comparison of
statistical connectivity strength of the
GWMD expanded network with 1,000
permutations of randomly selected pro-
teins from the global human network.
Red dots denote the value of the metric
on the GWMD expanded network con-
stituted by 1,530 proteins. Box and whis-
ker plots denote matched null
distributions (i.e., 1,000 permutations). (D,
left) Within-group edge count (i.e., num-
ber of edges between members of the
query set). (D, right) distance is the aver-
age path length in the network obtained
by calculating the shortest paths between
all pairs of proteins. (B–E) Zoom in the
network for specific putative candidates
as illustrative example of the GWMD ex-
panded network potentiality. (B) Delta 4-
desaturase, sphingolipid 1 (DEGS1); (C)
phosphatidylinositol 4-kinase alpha
(PI4KA); (D) mitochondrial ribosome-asso-
ciated GTPase 1 (MTG1); and (E) potas-
sium voltage-gated channel subfamily A
regulatory beta subunit 2 (KCNAB2) pro-
tein. *Recently associated with leukodys-
trophy. White matter expanded network
available in NDEx repository at public.
ndexbio.org/#/network/fd5fc166-9ecc-
11eb-9e72-0ac135e8bacf?

accesskey=a75ac048b59aca2c9310c04a6f1d96ea34052231d9204f284c5e1d420fc2ca26
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with leukodystrophy and identified in patients LNF-107 and
VH-322,34 (Figure 4C), (3) the mitochondrial ribosome-
associated GTPase 1 (MTG1) that plays a role in the regula-
tion of mitochondrial ribosome assembly and translational ac-
tivity (Figure 4D), and (4) the potassium voltage-gated channel
subfamily A regulatory beta subunit 2 protein (KCNAB2)
(Figure 4E).WhileGenematcher was key to find additional cases
for DEGS1 and PI4KA deficiencies, matches for putative can-
didates such as MTG1 and KCNAB2 are yet to be found.

Discussion
This is the largest series of patients of GWMD studied by
WES/WGS reported to date and the first one including
patients of all ages offering a global vision of the GWMD
diagnosis throughout life. We have proven the utility of
sWES-WGS combined with a phenotypic and interactome-
driven prioritization method, reaching a diagnostic yield of
72%. These results are superior to those recently reported
by a reference genetic diagnostics company on 541 cases,
with a WES diagnostic yield for leukodystrophies of 32%
(including trio and singleton cases) and 22.6% when con-
sidering proband-only cases.35 In another report including
100 patients with adult-onset leukodystrophy, the di-
agnostic rate was 26%.36 Our results are slightly better than
those reported in another study including 71 pediatric
cases.4,11 In a report by Vanderver et al.,4 a first trio WES
allowed a definite diagnosis in 42% of cases, while in a
second phase of the study11 including the 41 negative cases,
a molecular diagnosis was established in 9 more cases by
reanalysis and in 5 cases using WGS, representing 17% and
12%, respectively. We were able to increase diagnostic yield
24% (12/50) by WES reanalysis and 31% (5/16) by sin-
gleton WGS. However, in the referred study, previous ex-
pert filtering of cases led to a lower proportion of well-
known or canonical leukodystrophy genes in their cohort4

in comparison to ours (36% vs 51% in our cohort), which
may have an effect on our higher diagnostic yield. Com-
parison between the results of these cohorts is difficult
because of different study protocols and target population,
which comprised 20% adult GWMD in our case vs a
pediatric-only population in Vanderver et al.4 It is likely
that the use of trio WES/WGS would have improved our
diagnostic yields, and certainly would have ameliorated
turnaround times. Because of the very late implantation of
clinical exomes (instead of WES) in our health care system
and limited research funding resources, we chose to apply
singleton WES to help as many families as possible, as trio
studies may cost double37,38 to 3 times higher in our health
care system. The use of trio WES/WGS is recommended
when urgent diagnosis is required in intensive care unit
settings.39 Thus, the decision to use a singleton or trio
sequencing strategy should depend on the clinical urgency,
the entities under study that determine the proportion of
dominant de novo expected inheritances, the family char-
acteristics and availability of DNA, and funding or

structural resources needed to optimize the cost–benefit
ratio in every setting.37

Our study enabled identification of disorders caused by genes
rarely associated with white matter involvement (PTEN,
GFPT1,40 CAPN141), the diagnosis of certain cases with
atypical presentation (SCN8A,42 SOX10,43 POLR3A44), the
characterization of families harboring variants in more than 1
causative gene with blended phenotypes, the identification of
genes only recently associated with disease (i.e., PYCR245 or
TMEM63A46), and the discovery of novel disease entities and
candidate genes, which constitute important advantages over
disease-specific panels or clinical exomes (see Figure 2, eTables
1 and 4, and eResults for clinical summaries, links.lww.com/
WNL/B741). Furthermore, in 9 families (10%), we identified
variants in genes associated primarily with hereditary spastic
paraplegia (SPG11, SPG7, SPAST, DDHD2, CAPN1,
CYP2U1) (Figure 3), underscoring the notion of a continuum
of clinical spectrum, similarly to X-adrenoleukodystrophy,
PMD/SPG2, metachromatic dystrophy, or Alexander dis-
ease.47 Moreover, half of the genes identified in this cohort are
linked to genetic leukoencephalopathies, not classically con-
sidered leukodystrophy genes. Because many of these genes are
not included in multigene panels, the WES/WGS-derived di-
agnostic yield would be expected to be superior. As an example,
the diagnostic yield of a leukodystrophies disease gene panel
containing 134 genes was 46% in a recent study.48

Our report also exemplifies the genetic heterogeneity of
GWMD (57 different genes among the 91 diagnosed cases),
which supports that WES/WGS should be considered a first-
tier diagnostic test when the clinical presentation and MRI
pattern do not point to a specific diagnosis, in agreement with
the recent randomized clinical trial on pediatric patients with
GWMD.6 This would allow for gaining time, which is fun-
damental to establish appropriate genetic counseling and
specific treatment when available, usually indicated only in the
early stages of these very severe diseases. On average, our
patients reached a positive diagnosis at 6 months after study
inclusion, which stood in sharp contrast with the previous
diagnostic delay of 10 years of disease evolution on average.
Hence, reducing multiple unnecessary examinations with a
low cost–benefit ratio, as is the case for some metabolic
studies in the context of nonspecific neuroimaging, would
entail substantial economic savings for the health care system,
which together with the continued lowering of WES/WGS
costs makes a clear case for the adoption of at least WES if not
WGS as a first-tier test for undiagnosed GWMD. However,
first-line metabolic tests that may identify potentially treatable
cases should always be considered, prior to or in parallel with
WES/WGS.

Our study protocol has certain limitations. Paraclinical studies
preceding inclusion are heterogeneous and depend on the
availability of resources in the different participating centers.
In addition, we reported as diagnosed 5 cases harboring VUS
using technically strict ACMG criteria, as these variants could
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not be functionally validated. However, these cases with VUS
were carefully reviewed by expert clinicians and considered to
explain the phenotypic presentation with very high proba-
bility, and were thus considered solved by expert assessment.
Finally, WGS studies were prioritized in only 16 of the
remaining 38 negative cases (42%) because of limited DNA
availability of parents to perform segregation and funding
resources.

We provide evidence of the effectiveness of sWES-WGS
analysis based on a phenotype- and interactome-driven pri-
oritization algorithm to diagnose GWMD and to identify new
phenotypes and novel disease genes. We also provide a white
matter expanded interactome composed of known and pu-
tative new GWMD genes with the potential to aid in the
validation of private mutations in genes found in single fam-
ilies and the identification of novel candidate genes. The
utilization of advanced computational methods together with
the integration of a functional genomics laboratory capable of
experimental validation of VUS and candidate genes together
with the direct implication of adult and pediatric neurologists
in the process are determining factors for this high diagnostic
yield.
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48. Cohen L, Mańın A, Medina N, et al. Argentinian clinical genomics in a leukodys-
trophies and genetic leukoencephalopathies cohort: diagnostic yield in our first 9
years. Ann Hum Genet. 2020;84(1):11-28.

Neurology.org/N Neurology | Volume 98, Number 9 | March 1, 2022 e923

http://neurology.org/n


DOI 10.1212/WNL.0000000000013278
2022;98;e912-e923 Published Online before print January 10, 2022Neurology 

Agatha Schlüter, Agustí Rodríguez-Palmero, Edgard Verdura, et al. 
Sequencing Using Interactome-Driven Prioritization

Diagnosis of Genetic White Matter Disorders by Singleton Whole-Exome and Genome

This information is current as of January 10, 2022

Services
Updated Information &

 http://n.neurology.org/content/98/9/e912.full
including high resolution figures, can be found at:

References
 http://n.neurology.org/content/98/9/e912.full#ref-list-1

This article cites 47 articles, 3 of which you can access for free at: 

Subspecialty Collections

 http://n.neurology.org/cgi/collection/leukodystrophies
Leukodystrophies
following collection(s): 
This article, along with others on similar topics, appears in the

  
Permissions & Licensing

 http://www.neurology.org/about/about_the_journal#permissions
its entirety can be found online at:
Information about reproducing this article in parts (figures,tables) or in

  
Reprints

 http://n.neurology.org/subscribers/advertise
Information about ordering reprints can be found online:

ISSN: 0028-3878. Online ISSN: 1526-632X.
Wolters Kluwer Health, Inc. on behalf of the American Academy of Neurology.. All rights reserved. Print
1951, it is now a weekly with 48 issues per year. Copyright Copyright © 2022 The Author(s). Published by 

® is the official journal of the American Academy of Neurology. Published continuously sinceNeurology 

http://n.neurology.org/content/98/9/e912.full
http://n.neurology.org/content/98/9/e912.full#ref-list-1
http://n.neurology.org/cgi/collection/leukodystrophies
http://www.neurology.org/about/about_the_journal#permissions
http://n.neurology.org/subscribers/advertise

