Teaching NeuroImage: Fasting EEG in Glucose Transporter-1 Deficiency Syndrome

Hassan Imtiaz, MD, Afra Can, MD, Daniela Tapos, MD, and Amanda Weber, DO $Neurology ^{@}~2022;98:e774-e775.~doi:10.1212/WNL.000000000013143$

Correspondence

Dr. Imtiaz dr.hassanimtiaz@ hotmail.com

Figure EEG During Fasting (A and B) Showing Diffuse, Poorly Formed 3–4 Hz Spike-Wave Discharges

EEG after meal (C and D) showing background normalization. This EEG is shown on a 15-second epoch with a sensitivity of 7 μ V in a longitudinal bipolar montage, left over right.

A 12-year-old boy presented for the evaluation of chorea induced by fasting and exercise. EEG, brain MRI, spectroscopy, and metabolic and microarray evaluations were unremarkable. Fasting EEG showed diffuse spike-wave discharges with postprandial normalization (Figure); chorea was not captured. Genetic testing confirmed a pathogenic *SLC2A1* variation consistent with glucose transporter-1 (GLUT-1) deficiency syndrome, which is uniquely responsive to ketogenic diet. EEG findings in this syndrome may include multifocal or generalized spikes, with postprandial improvement. This case suggests a supportive role for fasting EEG in the diagnosis of glucose transporter-1 deficiency syndrome, but the sensitivity and specificity remain unclear.

Study Funding

The authors report no targeted funding.

Disclosure

The authors report no disclosures relevant to the manuscript. Go to Neurology.org/N for full disclosures.

MORE ONLINE

Teaching slides

links.lww.com/WNL/ B689

From the Wayne State University, Detroit, MI.

Go to Neurology.org/N for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.

Appendix Authors

Name	Location	Contribution
Hassan Imtiaz, MD	Wayne State University, Detroit, MI	Drafting/revision of the article for content, including medical writing for content; major role in the acquisition of data; and analysis or interpretation of data
Afra Can, MD	Wayne State University, Detroit, MI	Drafting/revision of the article for content, including medical writing for content, and major role in the acquisition of data
Daniela Tapos, MD	Wayne State University, Detroit, MI	Drafting/revision of the article for content, including medical writing for content, and major role in the acquisition of data

Appendix (continued)

Name	Location	Contribution
Amanda Weber, DO	Wayne State University, Detroit, MI	Drafting/revision of the article for content, including medical writing for content; major role in the acquisition of data; and analysis or interpretation of data

References

- Koch H, Weber YG. The glucose transporter type 1 (Glut1) syndromes. Epilepsy Behav. 2018;91:90-93.
- von Moers A, Brockmann K, Wang D, et al. EEG features of Glut-1 deficiency syndrome. Epilepsia. 2002;43(8):41-45.

Neurology.org/N Neurology | Volume 98, Number 7 | February 15, 2022 **e775**

Teaching NeuroImage: Fasting EEG in Glucose Transporter-1 Deficiency Syndrome

Hassan Imtiaz, Afra Can, Daniela Tapos, et al. Neurology 2022;98;e774-e775 Published Online before print December 3, 2021 DOI 10.1212/WNL.0000000000013143

This information is current as of December 3, 2021

Updated Information & including high resolution figures, can be found at: http://n.neurology.org/content/98/7/e774.full Services

References This article cites 2 articles, 0 of which you can access for free at:

http://n.neurology.org/content/98/7/e774.full#ref-list-1

Subspecialty Collections This article, along with others on similar topics, appears in the

following collection(s): All clinical neurophysiology

http://n.neurology.org/cgi/collection/all clinical neurophysiology

Chorea

http://n.neurology.org/cgi/collection/chorea

EEG; see Epilepsy/Seizures

http://n.neurology.org/cgi/collection/eeg see epilepsy-seizures

Epilepsy monitoring

http://n.neurology.org/cgi/collection/epilepsy_monitoring_ Gait disorders/ataxia

http://n.neurology.org/cgi/collection/gait_disorders_ataxia

Permissions & Licensing Information about reproducing this article in parts (figures, tables) or in

its entirety can be found online at:

http://www.neurology.org/about/about the journal#permissions

Reprints Information about ordering reprints can be found online:

http://n.neurology.org/subscribers/advertise

Neurology ® is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright © 2021 American Academy of Neurology. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.

