
Teaching NeuroImage: *IBA57* Mutation–Associated Infantile Cavitating Leukoencephalopathy

Ajith Cherian, MD, DM, PDF, Manisha K. Yalapalli, MD, Divya K P, MD, DM, Asish Vijayaraghavan, MD, DM, and Soumya Sundaram, MD, DM

Neurology® 2022;98:1029-1030. doi:10.1212/WNL.0000000000200671

CorrespondenceDr. K P
drdivyakp01@gmail.com

Figure 1 IBA57 Mutation-Associated Cavitating Leukoencephalopathy

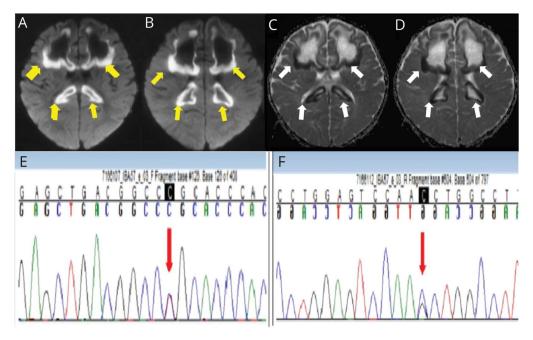
Corresponding axial T1 (A and B), T2 (C and D), and FLAIR (E and F) images show hyperintensities in frontal, parieto-occipital, and periventricular white matter with cavitating lesions suggesting a cavitating leukoencephalopathy.

A 14-month-old child, born of nonconsanguineous parentage, with normal early development till 1 year of age, presented with psychomotor regression. Examination revealed developmental age of 3 months and bipyramidal signs. Brain MRI (Figures 1 and 2) showed periventricular cavitating leukoencephalopathy (PCL). Clinical exome sequencing showed compound heterozygous, disease-associated missense variant in the *IBAS7* gene.

PCL with peripheral restricted diffusion along its margins helps in the diagnosis of *IBA57* mutation–induced multiple mitochondrial dysfunction syndrome type 3.¹ PCL has also been reported with defects in complexes 3 and 4 (*LYRM7*, *APOPT1*, *COX10*, and *COX6B* variants) and *MFN2* gene mutations.^{1,2}

Study Funding

The authors report no targeted funding.


MORE ONLINE

Teaching slides links.lww.com/WNL/ B936

From the Department of Neurology, Sree Chitra Tirunal Institute of Medical Sciences and Technology, Kerala, India.

Go to Neurology.org/N for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.

Figure 2 Diffusion-Weighted Images and Chromatogram of IBA57 Mutation

Diffusion-weighted images (A and B) show restriction (yellow arrows) with low apparent diffusion coefficient values (C and D, white arrows) along the margins. Sanger sequence chromatogram shows variation in exon 3 of the *IBA57* gene in mother (E) (c.802C>T; p.Arg268Cys) and father (F) (c.738C>G; p.Asn246Lys) in heterozygous condition. Both are at highly conserved positions.

Disclosure

The authors report no disclosures relevant to the manuscript. Go to Neurology.org/N for full disclosures.

Publication History

Received by *Neurology* November 7, 2021. Accepted in final form March 16, 2022. Submitted and externally peer reviewed. The handling editor was Roy Strowd III, MD, Med, MS.

Appendix Authors

Name	Location	Contribution
Ajith Cherian, MD, DM	Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananathapuram, Kerala, India	Conception, organization, and execution of the research project; writing of the first draft; and the review and critique of the manuscript
Manisha K. Yalapalli, MD	Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananathapuram, Kerala, India	Conception, organization, and execution of the research project and writing of the first draft

Appendix (continued)

Name	Location	Contribution
Divya K P, MD, DM	Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananathapuram, Kerala, India	Conception, organization, and execution of the research project and the review and critique of the manuscript
Asish Vijayaraghavan, MD, DM	Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananathapuram, Kerala, India	Review and critique of the manuscript
Soumya Sundaram, MD, DM	Department of Neurology, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Thiruvananathapuram, Kerala, India	Review and critique of the manuscript

References

- Liu M, Zhang J, Zhang Z, et al. Phenotypic spectrum of mutations in IBA57, a candidate gene for cavitating leukoencephalopathy. Clin Genet. 2018;93(2): 235-241
- Roosendaal SD, van de Brug T, Alves CAPF, et al. Imaging patterns characterizing mitochondrial leukodystrophies. AJNR Am J Neuroradiol 2021;42(7): 1334-1340.

Teaching NeuroImage: *IBA57* Mutation—Associated Infantile Cavitating Leukoencephalopathy

Ajith Cherian, Manisha K. Yalapalli, Divya K P, et al.

Neurology 2022;98;1029-1030 Published Online before print April 6, 2022

DOI 10.1212/WNL.000000000200671

This information is current as of April 6, 2022

Updated Information & including high resolution figures, can be found at:
Services http://n.neurology.org/content/98/24/1029.full

References This article cites 2 articles, 1 of which you can access for free at:

http://n.neurology.org/content/98/24/1029.full#ref-list-1

Subspecialty Collections This article, along with others on similar topics, appears in the

following collection(s): **Autonomic diseases**

http://n.neurology.org/cgi/collection/autonomic_diseases

Permissions & Licensing Information about reproducing this article in parts (figures, tables) or in

its entirety can be found online at:

http://www.neurology.org/about/about_the_journal#permissions

Reprints Information about ordering reprints can be found online:

http://n.neurology.org/subscribers/advertise

Neurology ® is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright © 2022 American Academy of Neurology. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.

