Connectomic Profiles and Cognitive Trajectories After Epilepsy Surgery in Children
Citation Manager Formats
Make Comment
See Comments
This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.
Abstract
Background and Objectives Neurocognitive outcomes after surgery for temporal lobe epilepsy in childhood are variable. Postoperative changes are not directly predicted by seizure freedom, and associations between epilepsy, neuropsychological function, and developing neural networks are poorly understood. Here, we leveraged whole-brain connectomic profiling in magnetoencephalography (MEG) to retrospectively study associations between brain connectivity and neuropsychological function in children with temporal lobe epilepsy undergoing resective surgery.
Methods Clinical and MEG data were retrospectively analyzed for children who underwent temporal lobe epilepsy surgery at the Hospital for Sick Children from 2000 to 2021. Resting-state connectomes were constructed from neuromagnetic oscillations via the weighted-phase lag index. Using a partial least-squares (PLS) approach, we assessed multidimensional associations between patient connectomes, neuropsychological scores, and clinical covariates. Bootstrap resampling statistics were performed to assess statistical significance.
Results A total of 133 medical records were reviewed, and 5 PLS analyses were performed. Each PLS analysis probed a particular neuropsychological domain and the associations between its baseline and postoperative scores and the connectomic data. In each PLS analysis, a significant latent variable was identified, representing a specific percentage of the variance in the data and relating neural networks to clinical covariates, which included changes in rote verbal memory (n = 41, p = 0.01, σ2 = 0.38), narrative/verbal memory (n = 57, p = 0.00, σ2 = 0.52), visual memory (n = 51, p = 0.00, σ2 = 0.43), working memory (n = 44, p = 0.00, σ2 = 0.52), and overall intellectual function (n = 59, p = 0.00, σ2 = 0.55). Children with more diffuse, bilateral intrinsic connectivity across several frequency bands showed lower scores on all neuropsychological assessments but demonstrated a greater propensity for gains after resective surgery.
Discussion Here, we report that connectomes characterized by diffuse connectivity, reminiscent of developmentally immature networks, are associated with lower preoperative cognition and postoperative cognitive improvement. These findings provide a potential means to understand neurocognitive function in children with temporal lobe epilepsy and expected changes postoperatively.
Glossary
- FSIQ=
- Full Scale IQ;
- LV=
- latent variable;
- MEG=
- magnetoencephalography;
- PLS=
- partial least-squares;
- SVD=
- singular value decomposition;
- wPLI=
- weighted-phase lag index
Footnotes
Go to Neurology.org/N for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.
- Received August 3, 2021.
- Accepted in final form February 8, 2022.
- © 2022 American Academy of Neurology
AAN Members
We have changed the login procedure to improve access between AAN.com and the Neurology journals. If you are experiencing issues, please log out of AAN.com and clear history and cookies. (For instructions by browser, please click the instruction pages below). After clearing, choose preferred Journal and select login for AAN Members. You will be redirected to a login page where you can log in with your AAN ID number and password. When you are returned to the Journal, your name should appear at the top right of the page.
AAN Non-Member Subscribers
Purchase access
For assistance, please contact:
AAN Members (800) 879-1960 or (612) 928-6000 (International)
Non-AAN Member subscribers (800) 638-3030 or (301) 223-2300 option 3, select 1 (international)
Sign Up
Information on how to subscribe to Neurology and Neurology: Clinical Practice can be found here
Purchase
Individual access to articles is available through the Add to Cart option on the article page. Access for 1 day (from the computer you are currently using) is US$ 39.00. Pay-per-view content is for the use of the payee only, and content may not be further distributed by print or electronic means. The payee may view, download, and/or print the article for his/her personal, scholarly, research, and educational use. Distributing copies (electronic or otherwise) of the article is not allowed.
Letters: Rapid online correspondence
REQUIREMENTS
You must ensure that your Disclosures have been updated within the previous six months. Please go to our Submission Site to add or update your Disclosure information.
Your co-authors must send a completed Publishing Agreement Form to Neurology Staff (not necessary for the lead/corresponding author as the form below will suffice) before you upload your comment.
If you are responding to a comment that was written about an article you originally authored:
You (and co-authors) do not need to fill out forms or check disclosures as author forms are still valid
and apply to letter.
Submission specifications:
- Submissions must be < 200 words with < 5 references. Reference 1 must be the article on which you are commenting.
- Submissions should not have more than 5 authors. (Exception: original author replies can include all original authors of the article)
- Submit only on articles published within 6 months of issue date.
- Do not be redundant. Read any comments already posted on the article prior to submission.
- Submitted comments are subject to editing and editor review prior to posting.
You May Also be Interested in
Association of Neurofilament Light With the Development and Severity of Parkinson Disease
Dr. Rodolfo Savica and Dr. Parichita Choudhury
► Watch
Related Articles
- No related articles found.