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Abstract
Objective
To perform an individual patient–level data (IPLD) analysis and to determine the relationship
between haptoglobin (HP) genotype and outcomes after aneurysmal subarachnoid hemor-
rhage (aSAH).

Methods
The primary outcome was favorable outcome on the modified Rankin Scale or Glasgow
Outcome Scale up to 12 months after ictus. The secondary outcomes were occurrence of
delayed ischemic neurologic deficit, radiologic infarction, angiographic vasospasm, and trans-
cranial Doppler evidence of vasospasm. World Federation of Neurological Surgeons (WFNS)
scale, Fisher grade, age, and aneurysmal treatment modality were covariates for both primary
and secondary outcomes. As preplanned, a 2-stage IPLD analysis was conducted, followed by
these sensitivity analyses: (1) unadjusted; (2) exclusion of unpublished studies; (3) all per-
mutations ofHP genotypes; (4) sliding dichotomy; (5) ordinal regression; (6) 1-stage analysis;
(7) exclusion of studies not in Hardy-Weinberg equilibrium (HWE); (8) inclusion of studies
without the essential covariates; (9) inclusion of additional covariates; and (10) including only
covariates significant in univariate analysis.

Results
Eleven studies (5 published, 6 unpublished) totaling 939 patients were included. Overall, the
study population was in HWE. Follow-up times were 1, 3, and 6 months for 355, 516, and 438
patients. HP genotype was not associated with any primary or secondary outcome. No trends
were observed. When taken through the same analysis, higher age and WFNS scale were
associated with an unfavorable outcome as expected.

Conclusion
This comprehensive IPLD analysis, carefully controlling for covariates, refutes previous studies
showing that HP1-1 associates with better outcome after aSAH.
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Aneurysmal subarachnoid hemorrhage (aSAH) survivors ex-
perience significant morbidity.1 The strongest predictor of
long-term outcome is the World Federation of Neurological
Surgeons (WFNS) grade,2 but it explained only 12% of the
variance in outcome as determined by the Glasgow Outcome
Scale (GOS)3 in the largest study of outcome prediction in
aSAH.4 Some studies have suggested that haptoglobin
(HP) genotype may also influence outcome,5–9 but results
are conflicting.10 A recent meta-analysis found that the
HP2 allele was associated with a worse short-term but not
long-term outcome.11 This meta-analysis had limitations,
including small study sizes, heterogeneity in outcome
classification, and inability to control for covariates. The
relative contribution of HP genotype to outcome after
aSAH in a large cohort, relative to the WFNS and other
covariates, remains unknown.

In humans, there are 2 HP alleles, HP1 and HP2, and an
individual can be 1 of 3 genotypes: HP1-1, HP2-1, andHP2-2.
The main potential mechanism of theHP effect is through the
function of its protein (Hp) as a scavenger of extracellular
hemoglobin (Hb).10 Because the Hp-Hb scavenging system is
active in the CNS after aSAH,12 there is a strong biological
rationale to hypothesize that HP genetic variation influences
aSAH outcome. We therefore conducted an individual
patient–level data (IPLD) analysis of all identified published
and unpublished studies to investigate the relationship be-
tween HP genotype and outcome after aSAH.

Methods
The IPLD analysis was conducted in accordance with
Preferred Reporting Items for Systematic Reviews andMeta-
Analyses–Individual Participant Data (PRISMA-IPD)
guidelines.13 To ensure rigor, we enrolled early pro-
fessional statistical input, publicly deposited a protocol de-
fining a priori the outcomes and analytic strategy in June
2017,14 and included all published and unpublished studies
identified before analysis. All individual studies had approval
from the respective institutions, and the overall IPLD anal-
ysis had institutional ethics approval from the University of
Southampton.

Search strategy
Published studies were identified by PubMed and Web of
Science searches conducted in January 2017 with the key
words subarachnoid hemorrhage or subarachnoid

hemorrhage and haptoglobin, including reference lists within
publications. Abstracts were screened and then full articles
were reviewed for eligibility according to the inclusion/
exclusion criteria. Two study investigators (B.G. and I.G.)
conducted the search. Unpublished studies were identified
with the same search terms in Google and via the professional
network of the authors in 3 continents (United Kingdom,
United States, and Japan).

Inclusion/exclusion criteria
Published and unpublished studies were eligible for inclusion,
and there were no restrictions on study design. Inclusion
criteria consisted of (1) confirmed aSAH at age >18 years; (2)
HP genotype or phenotype available; (3) all essential cova-
riates available (see below); (4) data available and contractual
agreement reached by March 31, 2017; and (5) primary
outcome measures available at 1 month (±2 weeks) and/or 3
months (±1.5 months) and/or 6 months (4.5–12 months) of
aSAH. If >1 outcome was available within each of these time
frames, the one closest to 1, 3, or 6 months was used. The only
exclusion criterion was non-aSAH.

Data collection and management
The lead authors of all published and unpublished studies
identified with the search strategy were contacted verbally or
by e-mail and were invited to join the study. IPLD for patients
meeting the inclusion/exclusion criteria was requested in
spreadsheet format and was stored on a secure server at the
University of Southampton, UK. The type of data requested
has been published14 (additional Methods available from
Eprints, eprints.soton.ac.uk/426525/). Data were collated
according to study center and encoded with study and patient
identifiers to blind the statistical team.

Quality control
Studies were assessed for risk of bias with the Newcastle-
Ottawa Scale. The data underwent a number of quality con-
trol checks. Automated screens were conducted to identify
nonsensical values (e.g., out-of-range modified Rankin Scale
[mRS] and GOS scores, impossible age) and to check internal
consistency (e.g., mRS and GOS scores). Data descriptives
were used to compare with the expected norm and thereby
identify potential errors. Hardy-Weinberg equilibrium
(HWE)was assessed as a marker for case missingness. Manual
data checks were performed by 4 authors (B.G., D.O.B, D.R.,
and I.G.) independently. If any inconsistency or missing data
were identified or if further clarification was required, the
individual study lead was contacted.

Glossary
aSAH = aneurysmal subarachnoid hemorrhage; CI = confidence interval; DCI = delayed cerebral ischemia; GOS = Glasgow
Outcome Scale;Hb = hemoglobin;Hp = haptoglobin;HP = haptoglobin gene;HWE = Hardy-Weinberg equilibrium; IPLD =
individual patient–level data; mRS = modified Rankin Scale; OR = odds ratio; PRISMA-IPD = Preferred Reporting Items for
Systematic Reviews and Meta-Analyses–Individual Participant Data; SAH = subarachnoid hemorrhage; TCD = transcranial
Doppler; WFNS = World Federation of Neurological Surgeons.
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Primary outcome
The per-protocol primary outcome was the mRS15 or GOS
score,3 dichotomized into favorable and unfavorable. This
outcome was selected because it was deemed to be the most
clinically relevant outcome and was the most consistently
recorded among the studies analyzed. If both mRS and GOS
scores were available for the same dataset, the mRS score was
used. The GOS score was dichotomized into favorable (GOS
score 4–5 [good recovery or moderate disability]) or un-
favorable (GOS score 1–3 [severe disability, vegetative state,
or death]). The mRS score was dichotomized into favorable
(mRS score 0–2 [good recovery, no significant disability,
slight disability]) or unfavorable (mRS score 3–6 [moderate
disability, moderately severe disability, severe disability, or
death]).

Secondary outcomes
The secondary outcomes were delayed cerebral ischemia
(DCI), radiologic infarction, angiographic evidence of vaso-
spasm, and transcranial Doppler (TCD) evidence of vaso-
spasm, defined as velocity >200 cm/s. The secondary
outcomes could have been at any time during admission for
aneurysm rupture. If a secondary outcome variable was not
collected in a specific study, that study was not included in the
meta-analysis of that secondary outcome.

Covariates
Aminimum set of essential covariates was identified a priori to
minimize sample size attrition while retaining the strongest
known predictors of outcome after aSAH.16 These essential
covariates were used for both primary and secondary out-
comes: (1) age; (2) Fisher grade, dichotomized into grades 1
+ 2 and 3 + 4; (3) admission WFNS or Hunt and Hess grade
dichotomized into good (grades 1–3) and poor (grades 4–5);
and (4) treatment, categorized into endovascular and surgical.
Aneurysms treated conservatively were excluded due to small
numbers. If both WFNS and Hunt and Hess grades were
available, the WFNS grade was used. For the primary out-
come, follow-up time was used as a covariate using longitu-
dinal modeling. During the analysis, subsequent to
publication of the protocol, it became apparent that some of
these essential covariates resulted in highly sparse cells, es-
pecially in small studies. Because WFNS grade is by far the
most influential predictor among the minimum essential
covariates,4 studies in which WFNS grade could not be in-
cluded as a covariate were excluded from the analysis. For
both primary and secondary outcomes when possible,
allowing for sample size and data availability (table
e-1available from Eprints, eprints.soton.ac.uk/426525/), ad-
ditional covariates were used and prioritized in the following
order: diabetes mellitus, hypertension, race, and aneurysm
site. If additional covariates were used, the same covariates
were used in all studies.

Data analysis
The primary analytic strategy was a 2-stage IPLD study de-
sign; we also planned a secondary 1-stage IPLD analysis

because it is thought that both designs have their individual
strengths.17 The primary study statistician (D.R.) mainly
conducted the statistical analysis , and a second statistician in
the team (T.H.) confirmed the results. The statisticians were
blinded to the identification of the studies and patients
throughout the analysis. HWE was assessed for all studies
included. Two primary comparisons were planned: a binary
comparison of HP2-2 vs HP2-1 and HP1-1 (because the
previous meta-analysis showed that HP2-1 is similar to HP1-1
with respect to outcome) and a multicategorical comparison
of HP1-1 vs HP2-1 vs HP2-2. The primary 2-stage IPLD
analysis was performed for the primary and all secondary
outcomes as follows. In the first stage, the analysis was con-
ducted for each individual study to estimate the association of
outcome with Hp, adjusting for the baseline covariates and
time point. Given the binary nature of primary outcomes
measured at time points of 1-, 3-, and 6-month follow-up
(with studies having 1, 2, or 3 of these time points), gener-
alized estimating equation models with logit link were
implemented to account for the correlation between different
time points within the same subject for each individual study.
The interaction between time point andHP was also checked.
Binary logistic regression models were used for all the sec-
ondary outcomes because they were associated with only 1
time point. Odds ratios (ORs) and 95% confidence intervals
(CIs) from each individual study were estimated from the
above models. Cases with missing data were excluded; that is,
data were not imputed. In the second stage, ORs from the
individual studies were combined by the use of random-effects
meta-analysis. Results are reported as ORs with their 95% CIs
and corresponding p values. Heterogeneity was assessed with
the Higgins and Thompson I2 statistic and Cochrane Q test,
and publication bias (small-study effects) was examined with
funnel plots and the Egger test. All hypotheses were tested at
a nominal significance level of 0.05; that is, the probability of
a type I error (α) was 5%. SAS (version 9.4, SAS Institute, Inc,
Cary, NC) and STATA (version 14, StataCorp, College
Station, TX) were used for all the analyses.

To assess the robustness of results from the above primary
analysis, extensive sensitivity and/or subgroup analyses were
conducted. We first replicated the analysis using the 1-stage
approach with random-effect logistic regression modeling for
all outcomes including site as random effect. Next, several
subgroup analyses were performed, including exclusion of
those studies not in HWE or at high risk of bias, inclusion of
studies that do not have all the essential covariates, exclusion
of essential covariates, and inclusion of additional covariates
as defined above. We also coded GOS or mRS scores in 2
other ways. In the above analysis, we used the traditional
approach of dichotomizing of GOS and mRS scores into 2
categories, namely favorable and unfavorable (i.e., GOS
scores 1–3 vs 4–5; mRS scores 0–2 vs 3–6), to render sta-
tistical analysis and interpretation of results more straight-
forward and identical to most other published studies.
However, this approach poses disadvantages: it discards
valuable information of the full ordinal nature of outcome
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measures and ignores initial prognostic risk of patients.18–21

Hence, 2 alternative approaches were used as part of a sensi-
tivity analysis for the primary outcome. First, in the sliding
dichotomy method, the cutoff point for binarization of GOS
and mRS scores is differentiated by the predicted baseline
prognosis risk.18,21 Instead of defining good or bad outcome
for all patients using a single dichotomization point, the
sliding dichotomy approach customizes the definition of good
outcome according to the baseline prognosis risk of each
patient (additional Methods available from Eprints, eprints.
soton.ac.uk/426525/). Second, the proportional odds model
(also referred to as shift analysis or ordinal logistic regression)
was used to analyze the ordinal outcomes. This method is
sensitive for detecting a shift of the entire ordinal outcome
distribution and estimates a common OR for each of the
possible cutoff points of the outcome scale. The common OR
is formally valid if the ORs for each cut point are the same (the
proportional odds assumption).

Data availability
Anonymized aggregate data will be shared after formal request
to the corresponding author in accordance with the Univer-
sity of Southampton’s data-sharing policies and contracts with
the coauthors and their institutions.

Results
Study inclusion
APRISMA-IPD flow diagram details how studies were identified
(figure 1). Of 18 published studies identified in the literature
search, 5 were eligible for inclusion in the meta-analysis5–9,22

(table e-2 available from Eprints, eprints.soton.ac.uk/426525/).
A further 6 unpublished studies were identified through the
Haemoglobin after Intracranial Haemorrhage (HATCH) Con-
sortium (www.southampton.ac.uk/hatch). The lead authors of
these 11 eligible studies were invited to join the study, and all
provided IPLD. The study characteristics of published and

Figure 1 Preferred Reporting Items for Systematic Reviews and Meta-Analyses–Individual Patient Data (IPD) flow diagram
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Table 1 Demographic information on studies included in the IPLD, labeled by study identifier

Study identifier

A B C D E F G H I J K

Country of origin UK Japan US US UK US US US US US US and Italy

Published sample size, n — 95 74 — — 133 — — 193 32 —

Cases excluded from published data, n

Conservative treatment — — — — — — — — 1 2 —

Nonaneurysmal — — 2 — — — — — — — —

Unpublished cases, n 44 — 16 57 214 10 47 59 — — 55

Cases excluded from unpublished data, n

Conservative treatment 2 — 2 2 11 — — — — — 1

Nonaneurysmal 5 — — — 26 — — 21 — — —

No HP status — — — — 8 — 1 1 — — 5

Sample size for analysis, n 37 95 86 55 169 143 46 37 192 30 49

HP typing Western
blot

Western
blot

Western
blot

Western
blot

Western
blot

Western
blot

Western
blot

Western
blot

PCR Western blot Western
blot

Outcomes available Primary
outcome

DCI
Radiologic
infarction

TCD VSa

Primary
outcome

DCI
Radiologic
infarction

Angiographic
VS

Primary
outcome

DCI
Radiologic
infarction

Angiographic
VS

Primary
outcome

DCI
Radiologic
infarction

Angiographic
VS

TCD VS

Primary
outcome

TCD VS

Primary
outcome

DCIa

Angiographic
VS

TCD VS

Primary
outcome

DCI
Radiologic
infarction

Angiographic
VSa

TCD VS

Radiologic
infarction

TCD VSa

Primary
outcome

DCI
Angiographic
VS

TCD VS

Angiographic
VSb

DCIb

Angiographic
VSb

Outcomes entered into analysis
(percentage of sample size available used in
analysis)c

Primary
outcome
(100)

DCI (100)
Radiologic
infarction
(100)

Primary
outcome
(100)

DCI (100)
Radiologic
infarction
(100)

Angiographic
VS (99)

Primary
outcome
(98.8)

DCI (97.7)
Radiologic
infarction
(91.9)

Angiographic
VS (68.6)

Primary
outcome
(76.4)

DCI (100)
Radiologic
infarction
(98.2)

Angiographic
VS (100)

TCD VS (74.6)

Primary
outcome
(95.3)

TCD VS (55)

Primary
outcome
(77.6)

Angiographic
VS (81.1)

TCD VS (81.1)

Primary
outcome
(89.1)

DCI (93.5)
Radiologic
infarction
(93.5)

TCD (89.1) VS

— Primary
outcome
(95.3)

DCI (95.3)
Angiographic
VS (55.7)

TCD VS (90.6)

— —

Follow-up time for primary outcome, n

1 mo 0 95 86 42 0 111 38 — 0 — —

Continued
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Table 1 Demographic information on studies included in the IPLD, labeled by study identifier (continued)

Study identifier

A B C D E F G H I J K

3 mo 37 95 84 42 0 58 25 — 192 — —

6 mo 34 61 0 23 162 6 2 — 161 — —

Age, mean (SD), y 59.5 (13.0) 62.1 (13.7) 54.4 (14.3) 54.1 (12.9) 50.8 (11.6) 53.7 (13.9) 53.5 (12.9) 52.5 (15.7) 54.42 (11.2) 51.53 (12.8) 53.20 (11.2)

Fisher grade, n (%)

1 + 2 0 9 (9.6) 7 (8.1) 12 (21.8) 45 (26.6) 50 (36.5) 3 (6.8) 2 (25) 54 (28.1) 0 0

3 + 4 37 (100) 85 (90.4) 79 (91.9) 43 (78.2) 124 (73.4) 87 (63.5) 41 (93.2) 6 (75) 138 (71.9) 30 (100) 49 (100)

WFNS grade, n (%)

Good (1–3) 12 (32.4) 57 (60) 55 (64) 34 (61.8) 155 (91.7) 87 (62.6) 31 (70.5) 17 (85) 152 (79.2) — —

Poor (4–5) 25 (67.6) 38 (40) 31 (36) 21 (38.2) 14 (8.3) 52 (37.4) 13 (29.5) 3 (15) 40 (20.8) — —

Hunt and Hess grade, n (%)

Good grade (1–3) — 55 (57.9) 66 (76.7) 35 (63.6) — 105 (75.5) 30 (66.7) 5 (100) 152 (79.2) 15 (68.2) —

Poor grade (4–5) — 40 (42.1) 20 (23.3) 20 (36.4) — 34 (24.5) 15 (33.3) 40 (20.8) 7 (31.8) —

Treatment, n (%)

Endovascular 32 (86.5) 22 (23.2) 41 (47.7) 35 (63.6) 143 (85.1) 25 (20) 31 (67.4) 3 (50) 115 (60) 13 (43.3) 17 (34.7)

Surgical 5 (13.5) 73 (76.8) 45 (52.3) 20 (36.4) 25 (14.9) 100 (80) 15 (32.6) 3 (50) 77 (40) 17 (56.7) 32 (65.3)

Haptoglobin status, n (%)

HP1-1 8 (21.6) 7 (7.4) 11 (12.8) 13 (23.6) 25 (14.8) 34 (23.8) 15 (32.6) 6 (16.2) 25 (13) 9 (30) 7 (14.3)

HP2-1 16 (43.3) 39 (41) 45 (52.3) 30 (54.6) 80 (47.3) 62 (43.3) 24 (52.2) 22 (59.5) 109 (56.8) 10 (33.3) 26 (53.1)

HP2-2 13 (35.1) 49 (51.6) 30 (34.9) 12 (21.8) 64 (37.9) 47 (32.9) 7 (15.2) 9 (24.3) 58 (30.2) 11 (36.7) 16 (32.6)

HWE, χ2 (p value) 0.52 (0.471) 0.04 (0.841) 0.86 (0.354) 0.46 (0.498) 0 (1) 2.26 (0.133) 0.27 (0.603) 1.44
(0.230)

5.55 (0.018) 3.27 (0.071) 0.47 (0.493)

Abbreviations: DCI = delayed cerebral ischemia; HP = haptoglobin; HWE = Hardy-Weinberg equilibrium; IPLD = individual patient–level data; TCD = transcranial Doppler; VS = vasospasm.
Missing data are signified by —.
a Excluded from analysis because of the small number of observations available.
b Excluded from analysis because core covariates were not available.
c Includes only studies entered into primary and secondary analyses.
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unpublished studies are summarized in table 1. For blinding
purposes, each study was allocated a study identifier and is re-
ferred to by this identifier throughout the article. Across the 11
studies, 939 patients had IPLD available. Published studies were
assessed for risk of bias and attained a score of 5 (of a total of 9
maximum points) with the Newcastle-Ottawa Scale.

Demographics
Table 1 summarizes the demographics of the 11 studies included
in the meta-analysis. Only 1 study (study I) was significantly out
of HWE (p= 0.018). Overall, the IPLDwas inHWE (p= 0.663).

Primary outcome
Eight studies (A–G and I), with a total sample size of 755,
were included in the primary outcome analysis due to data
availability (table e-1 available from Eprints, eprints.soton.ac.
uk/426525/). Age, Fisher grade, WFNS grade, treatment, and
hypertension were controlled for in all studies except studies
B and G, in which inclusion of Fisher grade resulted in highly
sparse cells. Follow-up times were as follows: 1, 3, and 6
months for 355, 516, and 438 patients (table 1 for individual
studies). Using the 2-stage approach, we identified no asso-
ciation betweenHP genotype and unfavorable outcome when
comparing HP2-2 vs HP2-1 and HP1-1 (OR 0.977, 95% CI
0.672–1.421, p = 0.905) (figure 2A). When taken through the
same multivariate analysis, higher age (OR 1.05, 95% CI
1.02–1.08) andWFNS grade (OR 8.4, 95%CI 4.4–15.9) were
associated with an unfavorable outcome. Higher Fisher grade
was associated with poor outcome (OR 2.6, 95% CI 1.3–5.3),
and a trend for hypertension was seen (OR 1.5, 95% CI
0.9–2.4) in univariate analysis only. Treatment was not sig-
nificant (table e-3 available from Eprints, eprints.soton.ac.uk/
426525/). No significant association was identified in sub-
group analysis of HP2-2 vs HP1-1, HP2-1 vs HP1-1, HP2-2 vs
HP2-1, and HP2-2 and 2-1 vs HP1-1 (table 2 and figure e-1
available from Eprints, eprints.soton.ac.uk/426525/).

Because not all patients were included in the primary outcome
analysis due to data availability, we assessed selection bias in
these patients (i.e., only those included in this analysis). With
respect to HP genotype, patients were overall in HWE (p =
0.671). Compared to a typical hospital population,23 patients
in the primary outcome analysis of this IPLD had similar
WFNS grades (grades 4–5, 27.3% vs 24.7%, p = 0.143),
similar age (median 54.9 vs 55 years), lower coiling rate
compared to clipping (55.8% vs 81.4%, p < 0.001), and
a higher incidence of DCI (37.2% vs 21.7%, p < 0.001).
Compared to a typical randomized controlled trial pop-
ulation,24 patients in the primary outcome analysis of this
IPLD had similar WFNS grades (grades 4–5, 27.3% vs 22.9%,
p = 0.05), lower Fisher grade (grades 3–4, 77.3% vs 84.2%, p =
0.001), higher age (mean 54.7 vs 50 years, p < 0.001), lower
coiling rate compared to clipping (55.8% vs 66.9%, p < 0.001),
higher incidence of DCI (37.2% vs 16%, p < 0.001), and
similar favorable dichotomized mRS score at 6 months (74%
vs 71.7%, p = 0.353).

Secondary outcomes
The preplanned secondary outcomes were DCI, radiologic
infarction, angiographic vasospasm, and TCD evidence of
vasospasm. All analyses were conducted comparing HP2-2 vs
HP2-1 and HP1-1, HP2-2 vs HP1-1, HP2-1 vs HP1-1, HP2-2
vs HP2-1, and HP2-2 and 2-1 vs HP1-1. Only results for HP2-
2 vs HP2-1 andHP1-1 are detailed in the text below; the other
comparisons are summarized in table 2 (and their forest plot
data, figures e-2–e-5 available from Eprints, eprints.soton.ac.
uk/426525/).

Six studies (A–C, D, G, and I), with a total sample size of 497,
were included in the secondary outcome analysis for DCI.
Age, Fisher grade, WFNS grade, treatment, and hypertension
were controlled for in all studies except studies B, C, and G.
Fisher grade was not controlled for in studies B, C, and G due
to highly sparse cells. Using the 2-stage approach, we identi-
fied no association between HP genotype and DCI when
comparing HP2-2 vs HP2-1 and HP1-1 (OR 1.171, 95% CI
0.735–1.867, p = 0.507) or other permutations of HP sub-
groups (figure 3A and table 2).

Five studies (A–D and G), with a total sample size of 308,
were included in the secondary outcome analysis for radio-
logic infarction. Age, Fisher grade, WFNS grade, treatment,
hypertension, and aneurysm location were controlled for in all
studies except studies B and C. Fisher grade was not con-
trolled in studies B and C due to highly sparse cells. Using the
2-stage approach, we identified no association between HP
genotype and radiologic infarction when comparing HP2-2 vs
HP2-1 and HP1-1 (OR 1.255, 95% CI 0.632–2.490, p =
0.516) (figure 3B and table 2).

Five studies (B–D, F, and I), with a total sample size of 431,
were included in the secondary outcome analysis for the
presence of angiographic evidence of vasospasm. Age, Fisher
grade, WFNS grade, treatment, and hypertension were con-
trolled for in all studies. Using the 2-stage approach, we
identified no association between HP genotype and angio-
graphic evidence of vasospasm when comparing HP2-2 vs
HP2-1 and HP1-1 (OR 1.130, 95% CI 0.498–2.564, p =
0.771) (figure 3C and table 2).

Five studies (D–G and I), with a total sample size of 465, were
included in the secondary outcome analysis for the presence
of TCD evidence of vasospasm. Age, Fisher grade, WFNS
grade, treatment, and hypertension were controlled for in all
studies except study G. Fisher grade and treatment were not
controlled in study G due to highly sparse cells. Using the
2-stage approach, we identified no association between HP
genotype and TCD evidence of vasospasm when comparing
HP2-2 vs HP2-1 and HP1-1 (OR 0.895, 95% CI 0.557–1.439,
p = 0.648) (figure 3D and table 2).

Sensitivity analyses
There were 2 main potential reasons to explain the discrep-
ancy between the results here and the data from individual
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published studies. The first was publication bias; here, we
included all studies, and unpublished studies are more likely
to be negative. The second was controlling for covariates,
because most published studies did not control well for
covariates. We proceeded to investigate the relative

contribution of these 2 possibilities by repeating the primary
analyses for primary (figure 2B) and secondary (figure 4)
outcomes using data from published studies alone. We also re-
peated the primary (i.e., 2-stage IPLD) analyses without
adjusting for covariates for both primary (figure 2C) and

Figure 2 Forest plots for 2-stage individual patient–level data analysis for primary outcome (dichotomizedmodified Rankin
Scale score in HP2-2 vs HP2-1 and HP1-1)

An odds ratio (OR) >1 denotes a higher
probability of poor outcome. (A) Adjusted
for covariates, (B) same as A but including
published studies only, and (C) un-
adjusted for covariates. CI = confidence
interval; HP = haptoglobin; ID = identifier.
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secondary (figure 5) outcomes. None of these analyses showed
a significant difference or a trend suggesting an association.

A number of other sensitivity analyses were conducted to
evaluate the robustness of the results. These were as fol-
lows: (1) exclusion of studies in which patients included in
the primary analysis were not in HWE; (2) inclusion of
additional covariates; (3) inclusion of studies that did not
have all the essential covariates; (4) sliding dichotomy
analysis; (5) ordinal regression; (6) 1-stage analysis; (7)
unpublished studies only; and (8) including only covariates
significant in univariate analysis. For all, the results
remained consistent (figures e-6–e-11 and tables e-4–e-6
available from Eprints, eprints.soton.ac.uk/426525/).

There were no trends suggesting an association between
HP genotype and primary or secondary outcomes in any of
these analyses.

Heterogeneity and publication bias
In all analyses, there was little evidence for heterogeneity
(I2 range 0%–35.8%, Cochrane Q tests were not significant,
p > 0.05) except for angiographic vasospasm (figure 3C and
figure e-10C available from Eprints, eprints.soton.ac.uk/
426525/). There was no indication of publication bias from
funnel plots (Egger regression test, p > 0.05 for all the tests)
for any analyses (figures e-12–e-36 available from Eprints,
eprints.soton.ac.uk/426525/).

Table 2 Summary of the 2-stage IPLD analysis results for all primary and secondary outcomes adjusted for covariates

Outcome Analysis OR (95% CI) p Value

Primary HP2-2 vs HP2-1 and HP1-1 0.997 (0.672–1.421) 0.905

HP2-2 vs HP1-1 0.752 (0.429–1.321) 0.322

HP2-1 vs HP1-1 0.814 (0.470–1.410) 0.462

HP2-2 vs HP2-1 1.021 (0.684–1.524) 0.921

HP2-2 and 2-1 vs HP1-1 0.776 (0.461–1.305) 0.339

Secondary

DCI HP2-2 vs HP2-1 and HP1-1 1.171 (0.735–1.867) 0.507

HP2-2 vs HP1-1 0.878 (0.437–1.762) 0.713

HP2-1 vs HP1-1 0.735 (0.393–1.376) 0.336

HP2-2 vs HP2-1 1.187 (0.707–1.993) 0.517

HP2-2 and 2-1 vs HP1-1 0.851 (0.476–1.523) 0.587

Radiologic infarction HP2-2 vs HP2-1 and HP1-1 1.255 (0.632–2.490) 0.516

HP2-2 vs HP1-1 0.868 (0.314–2.402) 0.785

HP2-1 vs HP1-1 0.536 (0.218–1.319) 0.174

HP2-2 vs HP2-1 1.369 (0.662–2.832) 0.397

HP2-2 and 2-1 vs HP1-1 0.611 (0.259–1.441) 0.260

Angiographic vasospasm HP2-2 vs HP2-1 and HP1-1 1.130 (0.498–2.564) 0.771

HP2-2 vs HP1-1 0.942 (0.445–1.993) 0.877

HP2-1 vs HP1-1 0.862 (0.285–2.602) 0.792

HP2-2 vs HP2-1 1.184 (0.422–3.321) 0.749

HP2-2 and 2-1 vs HP1-1 1.015 (0.484–2.127) 0.969

TCD evidence of vasospasm HP2-2 vs HP2-1 and HP1-1 0.895 (0.557–1.439) 0.648

HP2-2 vs HP1-1 0.962 (0.496–1.867) 0.909

HP2-1 vs HP1-1 1.048 (0.566–1.940) 0.881

HP2-2 vs HP2-1 0.882 (0.534–1.456) 0.662

HP2-2 and 2-1 vs HP1-1 0.980 (0.550–1.746) 0.945

Abbreviations: CI = confidence interval; HP = haptoglobin; IPLD = individual patient–level data; OR = odds ratio; TCD = transcranial Doppler.
An OR >1 denotes a higher probability of poor outcome.
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Figure 3 Forest plots for 2-stage individual patient–level data analysis for secondary outcomes adjusted for covariates
(HP2-2 vs HP2-1 and HP1-1)

An odds ratio (OR) >1 denotes a higher proba-
bility of poor outcome. (A) Delayed cerebral is-
chemia, (B) radiologic infarction, (C)
angiographic evidence of vasospasm, and (D)
transcranial Doppler evidence of vasospasm. CI
= confidence interval; HP = haptoglobin; ID =
identifier.
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Discussion
As is normal in IPLD methodology, study size was driven by
data availability rather than by a predetermined sample size.
Prestudy power, by which we mean a power calculation using
estimates from prior studies, was performed on data from the

largest published study in the IPLD (study I),11 which had an
effect size of an OR of 1.8 for comparing HP2-2 vs HP2-1 and
HP1-1 on the primary outcome. A logistic regression of the
binary response variable (mRS score) on the binary in-
dependent variable (HP2-2 vs HP2-1 and HP1-1) with
a sample size of 755 subjects (of whom 69% were HP2-1 and

Figure 4 Forest plots for secondary outcomes, adjusted for covariates, published studies only (HP2-2 vs HP2-1 and HP1-1)

An odds ratio (OR) >1 denotes a higher
probability of poor outcome. (A) Delayed ce-
rebral ischemia, (B) radiologic infarction, (C)
angiographic evidence of vasospasm, and (D)
transcranial Doppler evidence of vasospasm.
CI = confidence interval; HP = haptoglobin; ID
= identifier.
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Figure 5 Forest plots for secondary outcomes, unadjusted for covariates (HP2-2 vs HP2-1 and HP1-1)

An odds ratio (OR) >1 denotes a higher probability of
poor outcome. (A) Delayed cerebral ischemia, (B) ra-
diologic infarction, (C) angiographic evidence of vaso-
spasm, and (D) transcranial Doppler evidence of
vasospasm. CI = confidence interval; HP = haptoglobin;
ID = identifier.

Neurology.org/N Neurology | Volume 92, Number 18 | April 30, 2019 e2161

Copyright © 2019 American Academy of Neurology. Unauthorized reproduction of this article is prohibited.

http://neurology.org/n


HP1-1 and 31% were HP2-2) achieved 94% power at a 0.050
significance level to detect a small to medium effect size of an
OR of 1.8 with a 2-sidedWald test. Even with the conservative
estimate of an OR of 1.6 (10% reduction of OR = 1.8), power
was 79% at a 0.050 significance level to detect the association.
Therefore, this study has conclusively proven that HP2-2 is
not associated with a poor long-term outcome as defined by
the mRS score, down to a minimum OR of 1.6.

Although the reason could simply be that there is no differ-
ence in the relative protective effects of different HP geno-
types, there are several possible explanations of how a clinical
effect could have been missed. First, the mRS and GOS may
be insufficiently sensitive outcome measures to detect subtle
yet important outcome variation in patients after aSAH, in-
cluding cognitive impairment, anxiety, and return to work.25,26

Subarachnoid hemorrhage (SAH)–specific outcome measures
covering these more subtle outcomes such as the SAH outcome
tool,27may bemore sensitive in detecting an association between
HP genotype and functional outcome. Another possible reason
is that the early brain injury takes longer to settle and expose the
final residual permanent deficit influenced by HP genotype. In
this study, outcomeswere analyzed 2weeks to 1 year after aSAH;
however, improvements have been demonstrated beyond this
time. For example, mRS score has been shown to improve in
19%of patients between 12 and 36months after aSAH.28Hence,
future studies should consider longer follow-up periods.

The negative result for all secondary outcomes is not con-
sistent with the recent meta-analysis that provided evidence
that the HP2 allele was associated with worse short-term
outcome, including DCI and vasospasm.11 The previous
meta-analysis had a number of limitations that may underlie
this discrepancy. First, the meta-analysis used a composite
definition of short-term outcome grouping DCI or cerebral
vasospasm by any definition into 1 binary outcome measure.
In comparison, the IPLD analysis here used specific defi-
nitions of cerebral vasospasm and DCI, which were analyzed
separately. Second, the meta-analysis did not control for
covariates known to affect outcome after aSAH, the inclusion
of which in the IPLD analysis may explain the different result.
The effect sizes observed for the secondary outcomes, besides
not achieving statistical significance or showing trends, were
extremely small. Taken together, this demonstrates that there
is no meaningful, clinically significant difference in these
outcomes between HP genotypes.

Although this IPLD analysis included a number of un-
published studies, which may have contributed significantly to
the negative result, a sensitivity analysis of published studies
only was still negative. It has previously been noted that in-
corporation of unpublished studies does not significantly
change the results of most meta-analyses.29

The binding of Hp to Hb is thought to confer protection via
a number of mechanisms, including limiting the oxidative
damage potential of Hb,30 facilitating its clearance via the

CD163 membrane receptor on macrophages/microglia,31

and generating an anti-inflammatory response.32 The lack of
a clear effect of HP genotype on outcome after aSAH in
humans contrasts with observations in animal models.
Transgenic mice expressing a murine equivalent of human
HP2 experienced more vasospasm and functional deficit after
experimentally induced SAH compared to wild-type mice.33

However, there are important biological differences between
mice and humans. The influence of Hp on the affinity of
CD163 to Hb is markedly different,34 and CD163 shedding
occurs in humans,12 not mice.35 These differences suggest
that the Hb scavenging system is sufficiently different between
the 2 species such that extrapolation of the detrimental effect
of HP2 observed in this mouse model to humans should be
done with extreme caution.

The basic unit of Hp protein is an Hp monomer consisting of
1 α and 1 β subunit. The HP1 allele codes for an α subunit
(called α1) with 1 cysteine residue that enables dimerization of
the Hp monomer by formation of a disulfide bond. The HP2
allele codes for an α2 subunit that contains an extra cysteine
residue compared to α1 and is therefore able to make multiple
disulfide bonds, resulting in several polymers of increasing
size in HP2-1 heterozygotes and HP2-2 homozygotes.10

Whether there is a functional difference between the proteins
expressed by different HP genotypes is controversial and very
much depends on which characteristic of Hp one considers. It
is well established that Hp expression is influenced by geno-
type: HP1-1 > HP1-2 > HP2-2.36 Some investigators have
demonstrated that the Hp1-1 dimer is more effective than the
Hp2-2 polymer in reducing the oxidative potential of Hb,37–39

although other reports suggest that there is no difference.40–42

Binding affinity to CD163 appears to be higher for Hb in
complex with Hp2-2 polymer compared to Hp1-1 dimer.31,43

However, studies looking at the uptake of Hb-Hp complexes
by CD163-expressing cells are less clear, with some reporting
no difference40 and others indicating an increased binding
affinity of both Hp1-1 dimer43 and Hp2-2 polymer,44

depending on the experimental conditions. Differences may
extend to inflammatory effects because binding of Hp1-1-Hb
complexes to CD163 results in secretion of the anti-
inflammatory cytokine interleukin-1032,45 at levels several-
fold higher compared to Hp2-2-Hb complexes.45 It is also
plausible that differences may be unrelated to Hb scavenging.
For example, the HP1-1 genotype appears to decrease en-
dothelial progenitor cell cluster formation.46 HP2 has also
been associated with poorer clinical outcome in people with
diabetes mellitus, ischemic heart disease, and infections,36

suggesting that it may influence outcome after aSAH in
individuals with these comorbidities.

HP genotype may not influence outcome after aSAH, even if
there are differences betweenHP genotypes in Hb scavenging
efficiency. Recently, CD163 expression by neurons has been
demonstrated in animal models of cerebral hemorrhage.47

Because Hb is normally predominantly taken up in the CNS
bymicroglia, it has been proposed that this increased neuronal
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CD163 expression may lead to increased neuronal toxicity
through uptake of Hb.48 It is therefore possible that any po-
tential protective effect conferred by different HP genotypes
may be mitigated by increased neuronal toxicity. To date,
CD163 expression by human neurons in situ remains to be
demonstrated.

This IPLD analysis provides the most robust evidence to date
examining the relationship between HP genotype and out-
come after aSAH and has a number of strengths. First, this
study has the largest sample size to date,17 although still
smaller than usual for genetic studies. Second, the study
population was in HWE, excluding significant case missingness
or technical problems with genotype/phenotype ascertainment.
Third, a number of covariates known to affect outcome after
aSAH that have not been consistently controlled for in previous
studies were included in the analysis: age, WFNS grade, Fisher
grade, and treatment.23,49 Fourth, this study includes a large
number of unpublished studies identified through a network of
investigators worldwide. Fifth, it uses IPLD. Sixth, all analyses
were preplanned; the protocol was published before the analysis
was started; and the statisticians were blinded to the identities of
the study andHP genotypes (deidentification of the studies was
performed at the end, table e-7 available from Eprints, eprints.
soton.ac.uk/426525/). Finally, a comprehensive array of statis-
tical approaches was used.

There are several limitations. First, there was minor but sig-
nificant evidence of selection bias when patients in this study
were compared with both a hospital aSAH population23 and
a typical aSAH randomized controlled study,24 favoring
patients with a lower coiling rate compared to clipping and
a higher incidence of DCI. Second, this study was retro-
spective, and despite the collection of IPLD, the available data
limited the choice and number of covariates that could be
used. It does not control for other covariates known to be
important in predicting outcome after aSAH, including need
for CSF diversion and preoperative rebleeding,23 because of
a lack of data availability. In addition, although we have
controlled for follow-up time, the duration varied significantly
between studies. Future studies could examine Hp subunit
expression because the Hp α1 chain band intensity may be
prognostic in HP2-1 individuals.50
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