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Abstract
Objective
To identify a plasma metabolomic biomarker signature for migraine.

Methods
Plasma samples from 8Dutch cohorts (n = 10,153: 2,800 migraine patients and 7,353 controls)
were profiled on a 1H-NMR-based metabolomics platform, to quantify 146 individual
metabolites (e.g., lipids, fatty acids, and lipoproteins) and 79 metabolite ratios. Metabolite
measures associated with migraine were obtained after single-metabolite logistic regression
combined with a random-effects meta-analysis performed in a nonstratified and sex-stratified
manner. Next, a global test analysis was performed to identify sets of related metabolites
associated with migraine. The Holm procedure was applied to control the family-wise error rate
at 5% in single-metabolite and global test analyses.

Results
Decreases in the level of apolipoprotein A1 (β −0.10; 95% confidence interval [CI] −0.16,
−0.05; adjusted p = 0.029) and free cholesterol to total lipid ratio present in small high-density
lipoprotein subspecies (HDL) (β −0.10; 95% CI −0.15, −0.05; adjusted p = 0.029) were
associated with migraine status. In addition, only in male participants, a decreased level of
omega-3 fatty acids (β −0.24; 95% CI −0.36, −0.12; adjusted p = 0.033) was associated with
migraine. Global test analysis further supported that HDL traits (but not other lipoproteins)
were associated with migraine status.

Conclusions
Metabolic profiling of plasma yielded alterations in HDL metabolism in migraine patients and
decreased omega-3 fatty acids only in male migraineurs.
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Migraine is an episodic brain disorder affecting about 15% of the
general population, occurs 3 times more frequently in women
than men, and is ranked as the second most disabling disease
worldwide.1–4 In one-third of patients, transient focal neurologic
symptoms precede the headache (migrainewith aura).1Migraine,
especially in women, has been linked to an increased risk for
cerebrovascular and cardiovascular diseases.5–8 Systemic (micro)
vascular dysfunction, but not atherosclerosis,9,10 has been sug-
gested to be the underlying cause for this association.11,12

Previous studies showed elevations of total cholesterol, low-
density lipoprotein cholesterol (LDL-C), and triglyceride
levels, and decreases of high-density lipoprotein cholesterol
(HDL-C) levels, to be associated with migraine.13 However,
results were not consistently replicated due to methodologic
variability,13 emphasizing the need for a systematic approach.
High-throughput proton nuclear magnetic resonance (1H-
NMR) allows for the rapid simultaneous identification and
quantification of hundreds of metabolite measures in body
fluids, providing metabolic profiles in large patient cohorts14

that hopefully provide more detailed pathophysiologic in-
sight, beyond the traditional blood-based measurements.
Identifying circulating biomarkers might provide insights into
molecular signature of migraine, and perhaps its relation with
cerebrovascular and cardiovascular disease.12

We performed large-scale metabolic profiling of plasma on
a 1H-NMR platform measuring >220 metabolite measures in
8 large Dutch cohorts.14 The platform was designed for a de-
tailed assessment of cholesterol measures, triglycerides, creatine,
lipids, fatty acids, apolipoproteins, amino acids, glycolysis-related
metabolites, and ketone bodies.14 We aimed to find circulating
biomarkers and functionally related metabolite sets in plasma
associated with migraine. Furthermore, we investigated these
separately for female or male participants.

Methods
Study population
Eight Dutch cohorts, which collaborate in the Dutch Biobanking
and BioMolecular resources Research Infrastructure (BBMRI;
bbmri.nl/), provided samples: The Leiden University Migraine
Neuro-Analysis (LUMINA),15 The Netherlands Study of De-
pression and Anxiety (NESDA-1, NESDA-2),16 The Nether-
lands Twin Registry (NTR),17 The Erasmus Rucphen Family

study (ERF),18,19 The Rotterdam Study (RS),20 TheMaastricht
Study (TMS),21 and LifeLines.22,23 These cohorts include
population-based cohorts (NTR, ERF, RS, and LifeLines), web-
based (clinic-based) (LUMINA) cohorts, and mixed clinic- and
population-based cohorts (NESDA-1, NESDA-2, and TMS).
Participants were unrelated, except for NTR and ERF partic-
ipants. NTR participants included twins, their parents, siblings,
and spouses. ERF participants originated from a genetically
isolated population in the southwest of the Netherlands. Cases
were patients diagnosed with migraine. Probable migraine cases
were not included. The control group consisted of participants
negative for (probable) migraine. Apart from probable migraine
patients, no participants were excluded. Information onmigraine
symptomatology, used for migraine assessment, was collected
by means of surveys based on the International Classification
of Headache Disorders (ICHD) criteria (NESDA, NTR, and
TMS),24 self-reported only (LifeLines), or a combination of
questionnaires based on the ICHD criteria and a follow-up
(telephone) interview (LUMINA, ERF, and RS).24,25 For
details regarding the cohorts, migraine assessments, other
relevant disorders, and sampling procedures, see e-Methods
(doi.org/10.5061/dryad.p698mn7). All blood samples were
measured essentially in one batch in 2014, with the excep-
tion of part of the samples from NESDA (the NESDA-2
samples), which were analyzed a few months later.

Standard protocol approvals, registrations,
and patient consents
All participants of the respective cohorts provided written
informed consent. The study was approved by the local ethics
committees of each study.

Metabolite quantification
Metabolites were quantified from EDTA plasma samples
of 10,174 individuals (after quality control, 10,153 samples
remained), analyzed using the same high-throughput 1H-NMR
metabolomics platform (Nightingale Health Ltd., Helsinki,
Finland; nightingalehealth.com/).14 This platform provides
simultaneous quantification of 147 individual metabolites and
79 metabolite ratios; for example, routine lipids, lipoprotein
subclass profiling with lipid concentrations within 14 subclasses,
esterified fatty acid composition, and various low‐molecular
metabolites including amino acids, ketone bodies, and gluco-
neogenesis‐related metabolites in molar concentration units.
Details of the experimentation and applications of the NMR
metabolomics platform have been described previously.14

Glossary
apoA1 = apolipoprotein A1; BBMRI = Biobanking and BioMolecular resources Research Infrastructure; BMI = body mass
index; CI = confidence interval; ERF = Erasmus Rucphen Family study; 1H-NMR = proton nuclear magnetic resonance;
HDL = high-density lipoprotein; HDL-C = high-density lipoprotein cholesterol; ICHD = International Classification of
Headache Disorders; LDL = low-density lipoprotein; LDL-C = low-density lipoprotein cholesterol; LUMINA = Leiden
University Migraine Neuro-Analysis; NESDA = Netherlands Study of Depression and Anxiety; NTR = Netherlands Twin
Registry; RS = Rotterdam Study; S-HDL-FC = free cholesterol to total lipid ratio in small high-density lipoprotein ratio;TMS =
The Maastricht Study; VLDL = very low-density lipoprotein.
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Data preprocessing
The study flowchart is presented in figure 1. Metabolite
measures that failed quality control (in particular glutamine,
pyruvate, glycerol, β-hydroxybutyrate, and acetate) were ex-
cluded from the analysis. Metabolite measures with >10%
missing values were excluded entirely. The final set of me-
tabolite measures comprised 146 metabolites and 79 ratios,
totaling 225 metabolite measures. Second, outliers (>5 SD)
were removed in concordance with previous research in this
field.26 Third, metabolite measurements were raised by 1 to
allow log-transformation. Thereafter all metabolite values
were log-transformed and scaled to approximate normality
using a z-transformation prior to the analyses of each cohort.
This process was conducted using R 3.3.2 (R Foundation for
Statistical Computing, Vienna, Austria).

Single-metabolite logistic regression
For each metabolite measure separately, logistic regression
was performed with the metabolite measure, age at blood
draw, and sex as independent variables, and migraine status as
dependent variable. The obtained estimates and standard
errors for the metabolite measures were used in the

subsequent random-effects meta-analysis. A random-effects
model was chosen to account for possible heterogeneity due
to differences in migraine assessment, sample processing, and
sample collection between cohorts. Heterogeneity was
assessed using the I2 statistic and by visual inspection of forest
plots. The family-wise error rate (the probability of making at
least one type I error [false-positive] in a set of measures) was
controlled at 5% with the Holm procedure (Holm-Bonfer-
roni).27 This multiple testing correction procedure was used
because it is appropriate in case of strongly correlated meas-
ures, as is the case for our 225 metabolite measures. We
investigated the influence of familial relatedness onmetabolite
levels in NTR and ERF using Pearson correlation analysis, but
the effect of heritability on metabolite measure estimates
(NTR r = 0.984 and ERF r = 0.838) and p values (NTR r =
0.972 and ERF r = 0.702) was negligible (figure e-1; doi.org/
10.5061/dryad.p698mn7). Therefore, we did not include
relatedness in the model. Meta-analyses were conducted with
the meta software package for R 3.3.2.

Influence of other covariates
First, we independently assessed, within LUMINA and
NESDA, the influence of depression, smoking, fasting status,
body mass index (BMI), and lipid-lowering medication usage
on the metabolite levels of the candidate biomarkers identi-
fied in the single-metabolite logistic regression, using strati-
fication plots. LUMINA and NESDA cohorts were selected,
because the catalogue of covariates was most complete for
these cohorts and because the current migraine assessment
(LUMINA) and depression assessment (NESDA) were most
accurate and detailed. Furthermore, NESDA was the only
cohort that was measured in 2 separate batches. BMI and
lipid-lowering medication usage showed to be of influence on
the candidate biomarkers and were added to the single-
metabolite logistic regression model in all 8 cohorts. Sub-
sequently, meta-analyses were repeated.

Stability measure
We studied the stability of metabolite measures in LUMINA
participants (n = 41) that were sampled twice and measured
in the same batch on the 1H-NMR platform.14 For these
participants, time between blood draws ranged from 15 days
to almost 4 years (average 833 ± 434 days). To investigate
correlation between measurements and assess the effect of
time on metabolite levels, the absolute values on the first and
second measurement and the value difference between the
paired measurements vs the days between the measurements
was computed and analyzed with Pearson correlation analysis.
p Values <0.05 were regarded as statistically significant.
Analyses were performed using SPSS 23.0 (SPSS Inc., IBM,
Armonk, NY) and GraphPad Prism version 7.02 for Windows
(GraphPad Software, La Jolla, CA).

Sex-stratified analysis
In order to ascertain if the association of metabolites with
migraine status may be different between male and female
participants, we performed analyses stratified for sex in

Figure 1 Study flowchart

Determination of the sample set used for data analysis and the different
data analysis approaches performed in the current study. 1H-NMR = proton
nuclear magnetic resonance.
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accordance with the aforementioned single-metabolite logis-
tic regression and random-effects meta-analysis model with
family-wise error rate at 5% controlled using the Holm pro-
cedure (Holm-Bonferroni).27

Global test analysis
Associations of predefined sets of related metabolites with
migraine status were tested with the global test framework,28,29

adjusted for sex, age at blood draw, BMI, and lipid-lowering
medication usage. The global test is aimed at associations
between particular sets of (functionally) related metabolites
and migraine status and does not test the direction of the
association, that is, whether sets of metabolites are upregu-
lated or downregulated. Metabolites were assigned to 23
different groups (tables e-1 and e-2; doi.org/10.5061/dryad.
p698mn7) in agreement with the Kyoto Encyclopedia of
Genes and Genomes pathways and in accordance with a pre-
vious pathway analysis conducted with the same NMR plat-
form.30 The test statistics for the separate cohorts (p values)
from the global test were meta-analyzed using the Fisher
combination method.31 p Values < 0.05 after Holm-
Bonferroni correction were considered statistically signifi-
cant. Statistical analyses were conducted using the global test
5.30.0 software package for R 3.3.2.

Data availability
The data that support the findings of this study will be
available in the BBMRI-omics atlas (bbmri.researchlumc.nl/
atlas) and in the depository (datadryad.org/review?doi=doi:
10.5061/dryad.p698mn7).

Results
Study population
Reliable quantification of 146 blood plasma metabolites and
79 metabolite ratios were available for 10,153 participants
from 8 different cohorts: 2,800 migraine patients (80.6% fe-
male) and 7,353 controls (54.1% female) (see study flowchart
[figure 1]). Clinical characteristics from all cohorts are shown
in table 1.

Single-metabolite logistic regression
To identify potential metabolite biomarkers associated with
migraine status, we performed a separate logistic regression for
each metabolite measure in each cohort (table e-3; doi.org/10.
5061/dryad.p698mn7). Corresponding results were used in
a random-effects meta-analysis. Migraine was associated with
decreased apolipoprotein A1 levels (apoA1, an apoprotein with
specific association with high-density lipoprotein [HDL])
(β −0.10, 95% confidence interval [CI] −0.16, −0.05, adjusted
p = 0.029) and decreased free cholesterol to total lipid ratio in
small HDL (S-HDL-FC ratio; β −0.10, 95% CI −0.15, −0.05,
adjusted p = 0.029) (figure 2). Heterogeneity between cohorts
was minimal with I2 = 0% for both metabolite measures. A β of
−0.10 translates to an odds ratio for having migraine of 1.22
when comparing an individual with a typical low metabolite
score (z = −1 or 1 SD below average) and an individual with
a typical high metabolite score (z = 1 or 1 SD above average).

OtherHDLparticlemeasures (XL-HDL–[C, CE, FC, L, P, and
PL], L-HDL–[C, CE, FC, L, P, PL, and TG], total cholesterol
in HDL and HDL2, the mean diameter for HDL particles, and
the total cholesterol to total lipids ratio in very largeHDL)were
also reduced in migraine, but failed to reach significance after
correction for multiple comparisons (table e-4; doi.org/
10.5061/dryad.p698mn7). Despite the high negative cor-
relation between HDL and very low-density lipoprotein
(VLDL) or low-density lipoprotein (LDL) measures, only
a few associations with LDL or VLDL measures were found
nominally significant and none remained significant after
correction for multiple comparisons.

Candidate biomarker robustness assessment
Next, we assessed the influence of smoking, fasting status,
depression, lipid-lowering medication usage, and BMI (fig-
ures e-2–e-6; doi.org/10.5061/dryad.p698mn7) on apoA1
levels and the S-HDL-FC ratio in the LUMINA and NESDA
cohorts. Small effects of lipid-lowering medication usage and
BMI on apoA1 and S-HDL-FC ratio plasma levels were
identified. Other covariates did not influence these levels. For
all cohorts, BMI and lipid-lowering medication usage were
subsequently added to our model. The expanded model
revealed that a decreased apoA1 level (β −0.092, 95% CI
−0.15, −0.04) and S-HDL-FC ratio (β −0.068, 95% CI −0.12,
−0.02) were still associated (uncorrected p values 0.0010
and 0.0095) with migraine. To further support the ro-
bustness of the candidate biomarkers, correlation analyses
using 82 samples from 41 participants, acquired on 2
occasions (833 ± 434 days apart), revealed particularly
stable results between measurements in the same individual
patient for apoA1 (r = 0.859) and to a lesser extent for
S-HDL-FC ratio (r = 0.497) (figure e-7; doi.org/10.5061/
dryad.p698mn7).

Sex-stratified analysis
Given the preponderance of females amongmigraine patients,
we searched for possible differences in the metabolite profile
associated with migraine between male and female partic-
ipants (figure 3). ApoA1 levels were significantly associated
with migraine in male participants, with smaller effects, but in
similar direction, in female participants. Furthermore, the
apoB/apoA1 ratio was significantly higher in female migrai-
neurs compared to female controls. The S-HDL-FC ratio
(table e-5; doi.org/10.5061/dryad.p698mn7) was negatively
associated with migraine in female participants, but failed to
reach significance after correction for multiple testing. In male
participants, no apparent relation was identified for the
S-HDL-FC ratio. Associations with lower medium and large
HDL measures (L-HDL–[C, CE, FC, L, P, and PL]) were
significant in female participants, with a similar finding in male
participants, although not significant. Interestingly, in male
participants, lower omega-3 fatty acids (p = 0.033) were as-
sociated with migraine, an association not seen in female
participants. Clinical characteristics from all cohorts stratified
for sex and the sex-stratified meta-analysis are shown in
table 1.
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Table 1 Baseline characteristics of the study populations

LUMINA (n = 408) NESDA-1 (n = 1,082) NTR (n = 2,873) ERF (n = 1,413)

Cases (n = 317) Controls (n = 91) Cases (n = 276) Controls (n = 806) Cases (n = 1,360) Controls (n = 1,513) Cases (n = 178) Controls (n = 1,235)

M F M F M F M F M F M F M F M F

Total, n 105 212 47 44 48 228 353 453 217 1143 571 942 39 139 598 637

Age, y, mean ±
SD

44.6 ±
13.0

42.4 ±
12.1

42.1 ±
13.9

36.2 ±
14.0

41.7 ±
11.6

39.7 ±
11.3

44.1 ±
12.8

41.9 ±
13.8

44.5 ±
14.0

41.4 ±
12.7

40.4 ±
14.4

39.3 ±
13.6

46.6 ±
11.9

45.8 ±
12.3

48.8 ±
14.0

48.3 ±
14.5

BMI, kg/m2,
mean ± SD

24.5 ±
2.6

23.9 ±
3.8

24.2 ±
2.7

23.4 ±
3.4

26.5 ±
5.1

25.5 ±
5.2

26.1 ±
4.5

25.1 ±
5.0

25.2 ±
3.9

24.8 ±
4.5

24.9 ±
3.4

23.9 ±
3.9

28.0 ±
5.5

27.2 ±
5.6

27.3 ±
4.3

26.4 ±
4.9

LLMU, n 1 5 2 0 8 12 40 20 22 37 37 41 3 16 73 64

RS (n = 1,425) TMS (n = 687) LifeLines (n = 1,319) NESDA-2 (n = 946)

Cases (n = 173) Controls (n = 1,252) Cases (n = 79) Controls (n = 608) Cases (n = 249) Controls (n = 1,070) Cases (n = 168) Controls (n = 778)

M F M F M F M F M F M F M F M F

Total, n 29 144 556 696 27 52 458 150 49 200 504 566 27 141 285 493

Age, y,
mean ± SD

77.4 ±
4.2

79.3 ±
5.1

79.3 ±
4.6

79.5 ±
4.9

59.2 ±
8.5

61.5 ±
7.1

63.2 ±
7.3

61.8 ±
8.1

44.1 ±
11.1

43.3 ±
12.3

44.8 ±
14.1

43.9 ±
13.8

39.8 ±
9.8

41.8 ±
12.4

44.7 ±
13.5

42.7 ±
13.6

BMI, kg/m2,
mean ± SD

26.9 ±
3.0

27.6 ±
4.6

27.0 ±
3.3

27.8 ±
4.3

28.0 ±
3.4

30.0 ±
5.8

29.6 ±
4.7

30.3 ±
5.5

26.1 ±
3.3

25.6 ±
5.2

25.3 ±
3.4

24.8 ±
4.2

26.7 ±
5.2

24.8 ±
4.7

25.9 ±
4.2

24.9 ±
4.7

LLMU, n 8 31 142 153 21 31 335 113 0 8 29 20 0 4 32 36

Abbreviations: BMI = body mass index; ERF = Erasmus Rucphen Family study; LLMU = lipid-lowering medication usage; LUMINA = Leiden University Migraine Neuro-Analysis; NESDA = Netherlands Study of Depression and
Anxiety; NTR = Netherlands Twin Registry; RS = Rotterdam Study; TMS = The Maastricht Study.
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Global test analysis
To detect if migraine status was associated with particular sets
of (functionally) related metabolites, we tested the association
of 23 different predefined sets of metabolites with migraine
status using the global test. The global test does not evaluate
each metabolite measure individually, but tests whether the
levels of a group of metabolites are associated with an out-
come (in this case, migraine status). We controlled for the
same covariates as in the logistic regression per metabolite.
The global test was first applied per cohort, after which the p
values were combined in a meta-analysis using the Fisher
method (figure 4 and table 2). The global test analysis con-
firmed the association of HDL-associated metabolites with
migraine, already apparent from the single metabolite analysis,
with large clusters of medium (M−) to very large (XL−) HDL
subclasses generally associated with migraine status across the
majority of cohorts (figure e-8; doi.org/10.5061/dryad.
p698mn7). Interestingly, no other lipoprotein classes were
associated with migraine. Somewhat surprisingly, the

metabolism of valine, leucine, and isoleucine was signifi-
cantly associated with migraine, and not in line with the
findings from the single-metabolite analyses. This is a false-
positive result, obtained because this meta-analysis method
is based on nondirectional p values, and may provide a sig-
nificant p value even when the direction of change is not
consistent between cohorts, as is the case for these branched
chain amino acids.

Figure 2 Forest plots of candidate migraine biomarkers
apolipoprotein A1 (apoA1) and the free choles-
terol to total lipid ratio in small high-density li-
poprotein ratio (S-HDL-FC)

Associations with migraine in random-effects meta-analyses. The effect
sizes and 95% confidence intervals (CIs) for apoA1 and S-HDL-FC are pre-
sented per cohort and in a random-effects meta-analysis. Values from lo-
gistic regression with metabolite levels, sex, and age as independent
variables andmigraine status as dependent variable. Error bars denote 95%
CIs. To facilitate the interpretation of the effect sizes (β coefficients), we
calculated the odds ratio (OR) for having migraine for a typical low metab-
olite score (z score = −1, 1 SD below average) and a typical high metabolite
score: β −0.10, OR 1.22;β −0.20, OR 1.49;β −0.30, OR 1.82;β −0.40, OR 2.22;β
−0.50, OR 2.72. *p Values after Holm-Bonferroni (p < 0.0002)multiple testing
correction. ERF = Erasmus Rucphen Family study; I2 = measure of hetero-
geneity; LUMINA = Leiden University Migraine Neuro-Analysis; NESDA =
Netherlands Study of Depression and Anxiety 1 and 2; NTR = Netherlands
Twin Registry; RS = Rotterdam Study.

Figure 3 Sex-stratified metabolite associations with
migraine

Metabolite associations with migraine in male (blue squares) and female
(red circles) participants in a random-effects meta-analysis comprised of 8
cohorts. The effect sizes and 95% confidence intervals (CIs) are shown.
Values are from logistic regression with metabolite levels, sex, age, body
mass index, and lipid-lowering medication usage as independent variables
andmigraine status as dependent variable. Error bars denote 95% CIs, filled
squares (male participants ) or circles (female participants ) indicate signif-
icance after Holm-Bonferroni (p < 0.0002) multiple testing correction. All
other metabolite classes without significant metabolites after Holm-Bon-
ferroni correction as well as I2 values can be found in table e-5 (doi.org/10.
5061/dryad.p698mn7). To facilitate the interpretation of the effect sizes (β
coefficients), we calculated the odds ratio (OR) for having migraine for
a typical lowmetabolite score (z score = −1, 1 SDbelow average) and a typical
highmetabolite score: β −0.10, OR 1.22; β −0.20, OR 1.49; β −0.30, OR 1.82; β
−0.40, OR 2.22; β −0.50, OR 2.72. All metabolite abbreviations can be found
in tables e-1 and e-2 (doi.org/10.5061/dryad.p698mn7).
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Discussion
We performed high-throughput 1H-NMR metabolite profiling
of 225 metabolite measures in plasma samples from 8 Dutch
cohorts and identified a consistent association between migraine
and decreased HDL levels. We identified 2 circulating candidate
migraine biomarkers, which are both related to HDL status:
a decreased level of apoA1 (an apoprotein with a specific asso-
ciation with HDL) and a decreased S-HDL-FC ratio (the free
cholesterol to total lipid ratio in small HDL). In addition, fatty
acids of the omega-3 class were shown to be associated with
migraine, but only in male participants.

Dyslipidemia and migraine have been extensively studied be-
cause of the comorbidity of cerebrovascular and cardiovascular
disease and migraine, with the strongest associations in young
women without elevated conventional cardiovascular risk
profiles.5–8,13 Large population-based studies suggested elevated
total cholesterol, LDL-C, or triglycerides, and decreased levels of
HDL-C, in migraine.5–8,13 However, earlier results were con-
flicting13 due to cohort variability and measurement of crude
lipoprotein levels,5–8,13 or failed to detect differences in apoA1
levels, possibly due to lack of power.32,33 Notably, the sufficiently
poweredWomen’s Health Study observed a nonsignificant effect
with decreased apoA1 levels in 5,087 female participants with
a history of migraine (total population 27,626, mean age 54.7
years).34 A more prominent association between migraine and
apoA1 in men compared to women, and lower mean age in the

current study, might explain the difference between the studies.
To the best of our knowledge, lower omega-3 fatty acid levels
have not been reported in migraine. Of note, omega-3 fatty acid
supplements, due to their anti-inflammatory action, have been
investigated in migraine attack prevention.35 A recent meta-
analysis found no apparent reduction in headache frequency after
omega-3 fatty acid supplementation; however, a significant re-
duction in headache duration was found across studies.35

HDL subclasses are composed of proteins and lipids, each
roughly representing 50% of the total mass of HDL. Major
proteins are apoA1 (70%) and apoA2 (20%) together with
proteins such as apoA4, apoE, apoJ, haptoglobin, paraoxanase,
α2-macroglobulin, and lecithin cholesterol acyltransferase.36

These proteins contribute to various functions of HDL, in-
cluding mediating the reverse cholesterol transport pathway and
antioxidative, anti-inflammatory, and antithrombotic effects.37

Combining the different analyses conducted, we identified an
association between deceased apoA1 level and S-HDL-FC ratio
and migraine together with decreased levels of medium to very
large HDL measures, in the absence of clear LDL, intermediate-
density lipoprotein, or VLDL involvement. Thus, the observed
profiles suggest that migraine is associated with alterations in
specific HDL functions but not with a general dyslipidemia
profile characteristic for cardiovascular conditions.

Although this biomarker discovery study was not aimed to
unravel pathophysiologic mechanisms, several hypotheses

Figure 4 Global test analysis

Meta-analysis of the results of the 23 sets
of (functionally) related metabolites tested
in 8 cohorts for their association with mi-
graine. The analysis using the global test
framework has been adjusted for a sex,
age, body mass index, and lipid-lowering
medication usage. Glutamate metabolism
does not include results from the Nether-
lands Twin Registry as glutamine levels
could not be determined in this cohort.
Bars denote −log10 of the p value (Fisher
combination of global test p values for the
individual cohorts) per pathway, where
only the black bars remain significant after
multiple testing correction using Holm-
Bonferroni. The threshold forwithstanding
multiple testing correction is indicated by
a dotted line. IDL = intermediate-density
lipoprotein; LDL = low-density lipoprotein;
VLDL = very low-density lipoprotein.
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Table 2 Cohort results of global test analysis and Fisher combination method

LUMINA,
p value

NESDA-1,
p value

NTR,
p value

ERF,
p value

RS,
p value

TMS,
p value

LifeLines,
p value

NESDA-2,
p value

Fisher
method

H-B corrected
p value

HDL particles 0.059 0.0091 0.047 0.052 0.228 0.372 0.059 0.448 0.00098 0.022

Valine, leucine, isoleucine metabolism 0.018 0.068 0.246 0.108 0.964 0.00014 0.743 0.766 0.00088 0.020

Triacylglycerols 0.099 0.507 0.567 0.225 0.236 0.473 0.00088 0.374 0.015 0.325

Apolipoproteins 0.059 0.023 0.133 0.056 0.570 0.609 0.123 0.631 0.017 0.336

Krebs cycle 0.118 0.254 0.066 0.0041 0.399 0.445 0.382 0.591 0.019 0.356

Phenylalanine and tyrosine metabolism 0.0036 0.795 0.429 0.039 0.315 0.271 0.400 0.436 0.029 0.524

Glycoprotein 0.015 0.115 0.415 0.484 0.849 0.104 0.966 0.059 0.047 0.804

VLDL particles 0.062 0.406 0.396 0.481 0.461 0.538 0.0050 0.295 0.048 0.804

Fatty acid measures 0.283 0.271 0.153 0.294 0.607 0.735 0.057 0.544 0.226 1.000

Glutamate metabolisma 0.190 0.069 NA 0.369 0.478 0.706 0.259 0.601 0.280 1.000

Ketone bodies 0.279 0.035 0.806 0.568 0.213 0.768 0.290 0.523 0.310 1.000

Glycolysis, gluconeogenesis, pyruvate
metabolism

0.826 0.820 0.182 0.045 0.899 0.093 0.586 0.927 0.413 1.000

Glycerophospholipids 0.660 0.166 0.068 0.645 0.827 0.521 0.404 0.490 0.482 1.000

Essential fatty acids 0.608 0.045 0.663 0.416 0.483 0.775 0.645 0.334 0.539 1.000

Protein 0.639 0.777 0.086 0.591 0.179 0.451 0.588 0.800 0.606 1.000

Creatine 0.617 0.994 0.352 0.068 0.194 0.528 0.966 0.822 0.639 1.000

Histidine metabolism 0.957 0.873 0.549 0.520 0.987 0.330 0.605 0.033 0.676 1.000

LDL particles 0.205 0.378 0.775 0.122 0.972 0.866 0.443 0.626 0.691 1.000

IDL particles 0.163 0.376 0.673 0.292 0.900 0.925 0.352 0.576 0.716 1.000

Glycerolipid metabolism 0.536 0.244 0.237 0.426 0.658 0.622 0.705 0.563 0.724 1.000

Alanine metabolism 0.408 0.588 0.812 0.353 0.906 0.130 0.590 0.633 0.770 1.000

Sphingolipids 0.164 0.383 0.306 0.909 0.550 0.776 0.781 0.736 0.816 1.000

Sterols/steroids 0.232 0.428 0.965 0.268 0.922 0.880 0.343 0.981 0.871 1.000

Abbreviations: ERF = Erasmus Rucphen Family study; H-B = Holm-Bonferroni; HDL = high-density lipoprotein; IDL = intermediate-density lipoprotein; LDL = low-density lipoprotein; LUMINA = Leiden University Migraine Neuro-
Analysis; NA = not applicable; NESDA = Netherlands Study of Depression and Anxiety; NTR = Netherlands Twin Registry; RS = Rotterdam Study; TMS = The Maastricht Study; VLDL = very low-density lipoprotein.
Corrected for age, sex, body mass index, and use of lipid-lowering medication.
a Determined without NTR due to nonquantified glutamine measurements.
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regarding pathophysiological mechanisms emerge from the
study. First, our findings provide some biochemical evidence
for a link with endothelium dysfunction in migraine as HDL
with its antioxidative, anti-inflammatory, and antithrombotic
effects plays a role in endothelial function.36–38 Interestingly,
omega-3 fatty acids, which showed decreased levels associated
withmigraine inmale participants, have also been shown to be
vasoprotective and have been deemed to generate anti-
inflammatory resolvins.39 It is at this point, however, only
speculation whether reduced protective actions of HDL and
omega-3 through endothelial dysfunction may explain the
association with migraine. Second, it has been suggested that
omega-3 fatty acids and certain HDL subclasses can travel
across the blood–brain barrier, which may have effects on
a neuronal level.40–42 Third, that omega-3 fatty acids are as-
sociated with migraine exclusively in male participants may
suggest distinct sex-specific mechanisms. However, this might
also be due to differences in omega-3-rich food consump-
tion43 and requires further specific investigation.

The strengths of this study are the large sample size (>10,000
participants) and extensive metabolic profiling (225 metab-
olite measures) to identify candidate biochemical biomarkers
for migraine. Furthermore, similar methods (EDTA samples,
1H-NMR platform, and facility) were used across cohorts. A
possible limitation of the study is that migraine status was
assessed with varying degrees of detail in the various cohorts,
which also made us unable to look into possible differences
between migraine with and without aura. Still, many cohorts
used validated questionnaires based on ICHD criteria and
have shown their effectiveness and precision in diagnosing
migraine,1,15,18 which is why metabolite measure associations
with migraine were chosen as main study outcome. To make
a clear distinction between definite migraineurs and non-
migraine participants, we excluded probable migraine cases
whenever possible. Additional variability due to sampling
protocols used, foremost time-to-freezer and centrifuge set-
tings, we aimed to control for by using meta-analysis
approaches with a random-effects model. The low heteroge-
neity seen in the random-effects meta-analysis, in particular
for the candidate biomarkers, seems to indicate that the
aforementioned variability only had a limited influence on the
study outcome. Our top metabolites related to HDL con-
centrations are known to be affected by BMI. Although we
corrected for BMI in our analysis, we cannot exclude a residual
confounding effect of this variable nor of any other variable
that we have not tested. However, the robustness of our
finding across different cohorts that differed in BMI dis-
tributions makes it likely that the HDL-related traits are truly
associated with migraine. Genetic variability was limited be-
cause all cohorts were comprised predominantly of partic-
ipants from the Netherlands, with Western European
ancestry, but as a direct consequence the generalizability of
our findings to other populations may be limited. The current
study design does not allow the study of causality. In-
tervention or animal studies are needed to further explore the
interplay between BMI, HDL-related traits, and migraine.

Another limitation of our multicohort design using distrib-
uted data analysis algorithms is that we cannot make definitive
estimates of the sensitivity and specificity of the candidate
biomarkers.

The current study illustrates the power of detailed metabolite
profiling for biomarker discovery in a large meta-analytic
design, pointing towards consistent associations of mainly
medium to very large HDL measures with migraine. Fur-
thermore, we identified a male-specific association between
migraine status and omega-3 fatty acids. Our study suggests
that alterations in HDL metabolism may be involved in the
association between migraine and cerebrovascular and car-
diovascular disease.
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