# Dermoskeletics to preserve mobility and function in inclusion body myositis

Océane Landon-Cardinal, MD, François Prince, PhD, Stéphane Bédard, PEng, MSc, Olivier Benveniste, MD, PhD, and Marie Hudson, MD, MPH

Neurology® 2018;91:760. doi:10.1212/WNL.000000000006365

A 45-year-old man developed gradual onset of finger flexors and quadriceps weakness. Anti-NT5C1A antibody was positive, and muscle biopsy was consistent with inclusion body myositis. Options to preserve his mobility were explored. The Dermoskeleton uses high-end sensors and advanced artificial intelligence to detect the user's mobility intentions and generate synchronized assistance at the motorized knees. The device considerably improved the patient's 6-minute walk test (720–790 m) and stair climbing capacity (69–140 steps per minute) (videos 1 and 2), as a result of both assistance (primary) and bracing (secondary) factors. Advancing biomechanical technology provides novel options to preserve mobility and function for patients with neuromuscular diseases.

#### **Author contributions**

O. Landon-Cardinal, F. Prince, S. Bédard, and M. Hudson: conceptualization and design. O. Landon-Cardinal, F. Prince, and M. Hudson: acquisition of data. O. Landon-Cardinal, F. Prince, O. Benveniste, and M. Hudson: analysis and interpretation of data. O. Landon-Cardinal, F. Prince, S. Bédard, O. Benveniste, and M. Hudson: critical revision of the manuscript for important intellectual content.

## **Acknowledgment**

The authors specially thank the PERFORM Centre, Concordia University, for providing the ideal spaces for shooting these videos and for providing an ideal research environment.

### Study funding

No targeted funding reported.

## **Disclosure**

The authors report no disclosures relevant to the manuscript. Go to Neurology.org/N for full disclosures.

#### Correspondence

Dr. Landon-Cardinal o.landoncardinal@ gmail.com

#### **MORE ONLINE**

Video



# Dermoskeletics to preserve mobility and function in inclusion body myositis

Océane Landon-Cardinal, François Prince, Stéphane Bédard, et al.

Neurology 2018;91;760

DOI 10.1212/WNL.000000000006365

## This information is current as of October 15, 2018

**Updated Information &** including high resolution figures, can be found at: **Services** http://n.neurology.org/content/91/16/760.full

Subspecialty Collections This article, along with others on similar topics, appears in the

following collection(s): **All Neuromuscular Disease** 

http://n.neurology.org/cgi/collection/all\_neuromuscular\_disease

**Autoimmune diseases** 

http://n.neurology.org/cgi/collection/autoimmune\_diseases

Muscle disease

http://n.neurology.org/cgi/collection/muscle\_disease

**Permissions & Licensing** Information about reproducing this article in parts (figures, tables) or in

its entirety can be found online at:

http://www.neurology.org/about/about\_the\_journal#permissions

**Reprints** Information about ordering reprints can be found online:

http://n.neurology.org/subscribers/advertise

*Neurology* ® is the official journal of the American Academy of Neurology. Published continuously since 1951, it is now a weekly with 48 issues per year. Copyright © 2018 American Academy of Neurology. All rights reserved. Print ISSN: 0028-3878. Online ISSN: 1526-632X.

