Quantitative MRI in hypomyelinating disorders
Correlation with motor handicap
Citation Manager Formats
Make Comment
See Comments
This article requires a subscription to view the full text. If you have a subscription you may use the login form below to view the article. Access to this article can also be purchased.
Abstract
Objective: To assess the correlation of tissue parameters estimated by quantitative magnetic resonance (MR) techniques and motor handicap in patients with hypomyelination.
Methods: Twenty-eight patients with different causes of hypomyelination (12 males, 16 females; mean age 10 years) and 61 controls (33 males, 28 females; mean age 8 years) were prospectively investigated. We quantified T2 relaxation time, magnetization transfer ratio, fractional anisotropy, mean, axial, and radial diffusivities, and brain metabolites. We performed measurements in the splenium, parietal deep white matter, and corticospinal tracts in the centrum semiovale. We further analyzed diffusion measures using tract-based spatial statistics. We estimated severity of motor handicap by the gross motor function classification system. We evaluated correlation of handicap with MR measures by linear regression analyses.
Results: Fractional anisotropy, magnetization transfer ratio, choline, and N-acetylaspartate/creatine ratio were lower and diffusivities, T2 values, and inositol were higher in patients than in controls. Tract-based spatial statistics showed that these changes were widespread for fractional anisotropy (96% of the white matter skeleton), radial (93%) and mean (84%) diffusivity, and less so for axial diffusivity (20%). Correlation with handicap yielded radial diffusivity and N-acetylaspartate/creatine ratio as strongest independent explanatory variables.
Conclusions: Gross motor function classification system grades are in part explained by MR measures. They indicate that mainly lack of myelin and, to a lesser degree, loss of axonal integrity codetermine the degree of motor handicap in patients with hypomyelinating disorders. These MR measures can be used to evaluate strategies that are aimed at promotion of myelination.
GLOSSARY
- AD=
- axial diffusivity;
- CSI=
- chemical shift imaging;
- DTI=
- diffusion tensor imaging;
- FA=
- fractional anisotropy;
- GMFCS=
- gross motor function classification system;
- MD=
- mean diffusivity;
- MR=
- magnetic resonance;
- MTR=
- magnetization transfer ratio;
- NAA=
- N-acetylaspartylglutamate;
- RD=
- radial diffusivity;
- ROI=
- region of interest;
- TBSS=
- tract-based spatial statistics;
- TE=
- echo time;
- TFCE=
- threshold-free cluster enhancement;
- TR=
- repetition time;
- WM=
- white matter
Footnotes
Go to Neurology.org for full disclosures. Funding information and disclosures deemed relevant by the authors, if any, are provided at the end of the article.
↵* These authors contributed equally to this work as senior authors.
Supplemental data at Neurology.org
Editorial, page 748
- Received November 11, 2015.
- Accepted in final form March 12, 2016.
- © 2016 American Academy of Neurology
AAN Members
We have changed the login procedure to improve access between AAN.com and the Neurology journals. If you are experiencing issues, please log out of AAN.com and clear history and cookies. (For instructions by browser, please click the instruction pages below). After clearing, choose preferred Journal and select login for AAN Members. You will be redirected to a login page where you can log in with your AAN ID number and password. When you are returned to the Journal, your name should appear at the top right of the page.
AAN Non-Member Subscribers
Purchase access
For assistance, please contact:
AAN Members (800) 879-1960 or (612) 928-6000 (International)
Non-AAN Member subscribers (800) 638-3030 or (301) 223-2300 option 3, select 1 (international)
Sign Up
Information on how to subscribe to Neurology and Neurology: Clinical Practice can be found here
Purchase
Individual access to articles is available through the Add to Cart option on the article page. Access for 1 day (from the computer you are currently using) is US$ 39.00. Pay-per-view content is for the use of the payee only, and content may not be further distributed by print or electronic means. The payee may view, download, and/or print the article for his/her personal, scholarly, research, and educational use. Distributing copies (electronic or otherwise) of the article is not allowed.
Letters: Rapid online correspondence
REQUIREMENTS
You must ensure that your Disclosures have been updated within the previous six months. Please go to our Submission Site to add or update your Disclosure information.
Your co-authors must send a completed Publishing Agreement Form to Neurology Staff (not necessary for the lead/corresponding author as the form below will suffice) before you upload your comment.
If you are responding to a comment that was written about an article you originally authored:
You (and co-authors) do not need to fill out forms or check disclosures as author forms are still valid
and apply to letter.
Submission specifications:
- Submissions must be < 200 words with < 5 references. Reference 1 must be the article on which you are commenting.
- Submissions should not have more than 5 authors. (Exception: original author replies can include all original authors of the article)
- Submit only on articles published within 6 months of issue date.
- Do not be redundant. Read any comments already posted on the article prior to submission.
- Submitted comments are subject to editing and editor review prior to posting.
You May Also be Interested in
Hastening the Diagnosis of Amyotrophic Lateral Sclerosis
Dr. Brian Callaghan and Dr. Kellen Quigg
► Watch
Related Articles
Topics Discussed
Alert Me
Recommended articles
-
Article
White matter abnormalities in the corpus callosum with cognitive impairment in Parkinson diseaseIan O. Bledsoe, Glenn T. Stebbins, Doug Merkitch et al.Neurology, November 14, 2018 -
Articles
Influence of aging on brain gray and white matter changes assessed by conventional, MT, and DT MRIB. Benedetti, A. Charil, M. Rovaris et al.Neurology, February 27, 2006 -
Articles
A magnetization transfer histogram study of normal-appearing brain tissue in MSC. Tortorella, B. Viti, M. Bozzali et al.Neurology, January 11, 2000 -
Article
Natalizumab in progressive MSResults of an open-label, phase 2A, proof-of-concept trialJeppe Romme Christensen, Rikke Ratzer, Lars Börnsen et al.Neurology, March 28, 2014