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Meta-analysis inmore than 17,900 cases of
ischemic stroke reveals a novel association
at 12q24.12

ABSTRACT

Objectives: To perform a genome-wide association study (GWAS) using the Immunochip array in
3,420 cases of ischemic stroke and 6,821 controls, followed by a meta-analysis with data from
more than 14,000 additional ischemic stroke cases.

Methods: Using the Immunochip, we genotyped 3,420 ischemic stroke cases and 6,821 controls.
After imputation we meta-analyzed the results with imputed GWAS data from 3,548 cases and
5,972 controls recruited from the ischemic stroke WTCCC2 study, and with summary statistics
from a further 8,480 cases and 56,032 controls in the METASTROKE consortium. A final in silico
“look-up” of 2 single nucleotide polymorphisms in 2,522 cases and 1,899 controls was performed.
Associations were also examined in 1,088 caseswith intracerebral hemorrhage and 1,102 controls.

Results: In an overall analysis of 17,970 cases of ischemic stroke and 70,764 controls, we identi-
fied a novel association on chromosome 12q24 (rs10744777, odds ratio [OR] 1.10 [1.07–1.13],
p5 7.123 10211) with ischemic stroke. The association was with all ischemic stroke rather than an
individual stroke subtype, with similar effect sizes seen in different stroke subtypes. There was no
association with intracerebral hemorrhage (OR 1.03 [0.90–1.17], p 5 0.695).

Conclusion: Our results show, for the first time, a genetic risk locus associated with ischemic
stroke as a whole, rather than in a subtype-specific manner. This finding was not associated with
intracerebral hemorrhage. Neurology® 2014;83:678–685

GLOSSARY
GWAS 5 genome-wide association study; ICH 5 intracerebral hemorrhage; LD 5 linkage disequilibrium; MAF 5 minor allele
frequency; OR 5 odds ratio; QC 5 quality control; SNP 5 single nucleotide polymorphism; WTCCC2 5Wellcome Trust Case
Control Consortium 2.

Genetic variation is now thought to play an important role in many diseases, including stroke.
Genome-wide association studies (GWAS) have been applied to ischemic stroke directly, with
HDAC9 being identified as the first genetic risk factor specific to large artery ischemic stroke in
the Wellcome Trust Case Control Consortium 2 (WTCCC2) study.1 A 6p21.1 locus has also
been associated with large artery stroke in a GWAS from Australia.2 Subsequent replication of
these associations in a large meta-analysis by the METASTROKE consortium confirmed that all
were specific to individual ischemic stroke subtypes.3

GWAS arrays are designed to provide broad coverage of the entire human genome for non–
hypothesis-driven studies. To bridge the gap between full GWAS arrays and targeted candidate gene
studies, a smaller series of custom arrays has been developed. One such example is the Immunochip,
which offers a targeted genome-wide array comprising;200,000 genetic variants spanning a range of
immune-related genes.4 Development of the Immunochip also included approximately 3,000 single
nucleotide polymorphisms (SNPs) associated with ischemic stroke from an early-stage analysis of
WTCCC2 data. However, inflammatory processes have been implicated in the pathogenesis of
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cardiovascular disease and stroke, suggesting the
nonstroke content of the Immunochip may pro-
vide additional information when considering
the stroke phenotype.5,6 We report here the
use of the Immunochip as the initial phase
of a targeted GWAS, followed by meta-
analysis with full GWAS data fromWTCCC2
and an international collaboration of ischemic
stroke GWAS data (METASTROKE). This is
followed by in silico replication (i.e., ascertain-
ment from previous data without the need for
de novo genotyping) with data from the IN-
TERSTROKE and VISP studies.

METHODS Study design and participating studies. The
discovery sample consisted of 6 cohorts of patients of European

ancestry with ischemic stroke. Participating centers were based

in Belgium, Germany, the Netherlands (the PROMISe Study),

Poland, Sweden, and the UK (2 cohorts, one from London

[Imperial College; the BRAINS study] and one from Glasgow).

All cohorts provided geographically and ancestry-matched

controls. For the purposes of meta-analysis, the UK cohorts

were treated as a single center in line with previous analyses

undertaken in WTCCC2.1

Analysis plan. The analysis plan for this study was to perform a single

meta-analysis of available data as follows: (1) association analysis of

imputed Immunochip data; (2) meta-analysis with HAPMAP2-

imputed WTCCC2 data and METASTROKE consortium data for

which summary statistics were available; and (3): in silico look-up of

significant SNPs from meta-analysis in the INTERSTROKE

cohort7 and the VISP cohort.8 The populations used in both

WTCCC2 and METASTROKE have been previously

reported.1,3 The WTCCC2 data have also been contributed to

METASTROKE. Therefore, for this analysis the WTCCC2

data were removed from METASTROKE to prevent duplication of

individuals, as was the BRAINS dataset, which overlapped with

BRAINS cases contributing to the Immunochip discovery cohort.

Table 1 includes full details of the discovery cohorts and outlines

details of the WTCCC2, METASTROKE, INTERSTROKE,

VISP, and intracerebral hemorrhage (ICH) cohorts. A GWAS

standard a priori significance threshold of 5 3 1028 was considered

as a significant finding prior to analysis.

We additionally determined whether genome-wide associated

SNPs from this analysis were also associated with primary ICH by

in silico replication in GWAS data from a meta-analysis of 1,088

ICH cases and 1,102 controls (Genetics of Cerebral Hemorrhage

with Anticoagulation [GOCHA] study).9,10

Full population details and demographics of all consortia are

available in their original publications.1,3,7,8,9,10 Full details of the

Immunochip cohorts and the analysis methodology are available

in the online supplementary material on the Neurology® Web site

at Neurology.org.

Data genotyping, imputation, and statistical analysis. The
Immunochip consortium developed as an immune-related

targeted GWAS array comprising ;200,000 SNPs.4 As part of
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Table 1 Cohort sizes by study

Study Cohort Controls All SVD LVD CE

Immunochip Belgium (Leuven) 319 396 49 57 147

Germany (Munich) 2,355 421 8 101 127

Netherlands (Utrecht) 1,145 556 232 324 0

Poland (Krakow) 255 384 28 33 119

Sweden (Lund) 997 796 183 56 246

UK (London & Glasgow) 1,790 867 257 152 130

Total 6,861 3,420 757 723 771

WTCCC2 5,972 3,548 580 844 790

METASTROKEa 56,032b 8,480 1,177 1,203 1,586

INTERSTROKE 852 797 228 165 0

VISP 1,047 1,725 0 0 0

Total 70,764 17,970 2,742 2,935 3,147

ICH (GOCHA) 390 389 — — —

ICH (GOCHA-Warfarin) 169 181 — — —

ICH—Europe 529 532 — — —

Abbreviations: CE 5 cardioembolic; ICH 5 intracerebral hemorrhage; LVD 5 large vessel disease; SVD 5 small vessel
disease; WTCCC2 5 Wellcome Trust Case Control Consortium 2.
The UK Immunochip cohort comprised samples from London and Glasgow with matched controls. In line with the WTCCC2
study, these were meta-analyzed as a single UK cohort. The WTCCC2 study comprised cohorts fromMunich, Germany, and
3 UK sites (London, Oxford, and Edinburgh), as detailed previously. METASTROKE comprises 15 cohorts worldwide; full
details have been published.
aMETASTROKE in this study excludes those cohorts also included in WTCCC2 and BRAINS to prevent duplication of
samples. For brevity both WTCCC2 and METASTROKE are referred to as single cohorts here.
b For METASTROKE, not all cohorts contained all subtypes. As such, the control figure in the table represents the maximal
number of controls for the all ischemic stroke analysis.
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this design of the Immunochip, WTCCC2 disease areas,

including ischemic stroke, were able to suggest ;3,000 novel

SNPs for incorporation into the array. The Immunochip

therefore contains a subset of stroke-specific SNPs from an

early analysis of WTCCC2 ischemic stroke data. However, for

this study we used the entire Immunochip content.

The 6 discovery phase cohorts used the commercially avail-

able Immunochip array (Illumina, San Diego, CA). Genotyping

for the PROMISe study (the Netherlands) was performed inde-

pendently in Utrecht, the Netherlands. Genotyping for the re-

maining 5 case cohorts was performed at the Sanger Centre,

Hinxton, Cambridge, UK. Swedish controls were provided and

genotyped by the Swedish SLE network, Uppsala, Sweden.

Belgian control samples were provided through the efforts of

the International Multiple Sclerosis Genetics Consortium. Anal-

ysis and quality control (QC) of the PROMISe study (the

Netherlands) was performed in Utrecht and for all other cohorts

was performed at St George’s, University of London, UK.

The Immunochip datasets were each imputed separately to

the 1,000 Genomes Phase 1 integrated variant set (March

2012) using IMPUTE v2.2.2.11 Standard parameters were used

with the exception of the number of haplotypes (k), which was

increased to 100 to maximize accuracy. In total, between 123,920

and 135,006 SNPs were directly genotyped for the Belgian, Ger-

man, Polish, Swedish, and British cohorts. After imputation and

QC filtering on IMPUTE-info scores with filtering threshold

,0.3 and minor allele frequency (MAF) ,0.01, there were

between 3,601,403 and 4,170,444 autosomal SNPs for final

analysis. For the PROMISe study (the Netherlands), stricter

QC parameters on the directly genotyped SNPs resulted in

88,511 directly genotyped SNPs and 3,524,203 SNPs for final

analysis after imputation. Full details of SNPs at all stages for

the discovery cohorts are listed in table e-1. The lambda value

(a measure of genomic control to account for overinflation of false-

positive results) for the imputed Immunochip cohorts (filtered for

heterogeneity or missingness as in the meta-analysis) was l5 1.165,

equating to l1000 5 1.036 using the method of de Bakker et al.12

Selecting the stroke-specific subset of SNPs produced l 5 1.252

(l1000 5 1.055) and as a common null set the “reading and writing

SNP subset” fromWTCCC2 l5 1.300 (l1000 5 1.066), showing

little evidence for inflation in the stroke subset or the Immunochip

overall. QQ plots are shown in figure e-1.

Association analysis of clean imputed datasets was performed

for each Immunochip cohort individually using the frequentist

test under an additive model as implemented in SNPTEST

v2,13 including sex and 10 principal components as covariates.

Imputed genotype probabilities were taken into account using a

missing data likelihood score test or an expectation-maximization

method for SNPs with low MAF or high uncertainty. Association

analyses were performed on all ischemic stroke cases and for the

defined subtypes of large artery stroke, small vessel disease, and

cardioembolic stroke.

Meta-analyses were performed using an inverse-variance

weighted fixed-effects model as implemented in METAL.14 SNPs

were taken into consideration only if they were present in at least

50% of datasets, were genotyped or imputed in all phases, and if the

p value for Cochrane Q test for heterogeneity exceeded 1 3 1023.

For targeted replication with data from INTERSTROKE and

VISP, summary statistics were provided for 2 SNPs (rs17696736

and rs10744777) and meta-analyzed as above.

Conditional analysis. Conditional analysis of the Chr12 locus

was performed by including genotype dosage of each of the 10

genome-wide significant SNPs as a covariate in the logistic

regression model independently, as well as by inclusion of all

10 SNPs together. This was performed on Immunochip and

WTCCC2 data only since individual level genotypes were not

available for METASTROKE.

Risk factor defined analysis. A case-only risk factor defined

analysis was performed by classifying presence (case) or absence

(control) of defined risk factors in the Immunochip and

WTCCC2 cohorts (individual genotype level data were not

available for the METASTROKE, INTERSTROKE, or VISP

cohorts). The 5 cardiovascular risk factors hypertension,

diabetes, hypercholesterolemia, coronary artery disease/ischemic

heart disease, and smoking status were then assessed

independently across the Chr12 locus.

RESULTS Meta-analysis of Immunochip data. Analysis
of the 6 Immunochip cohorts comprising 3,420 cases
and 6,821 controls resulted in identification of 3
SNPs spanning 2 independent loci on chromosomes
10q26 and 19q13 exceeding a genome-wide
significance threshold of 5 3 1028 for all ischemic
stroke, and a further 9 SNPs spanning 5 loci in large
artery ischemic stroke (top SNPs in each of the 7 loci
shown in table 2, block 1, full findings in table e-2).
No SNP exceeded a genome-wide threshold in
cardioembolic stroke or small vessel disease when
examining Immunochip cohorts alone.

Meta-analysis withWTCCC2 andMETASTROKE
data confirmed previously published associations
between the HDAC9 locus on chromosome 7p21
and large artery stroke, and between PITX2 and
ZFHX3 loci at 4q25 and 16q22 and cardioembolic
stroke. Meta-analysis also revealed a novel locus at
12q24.12 (top SNP rs17696736, p5 6.063 10210).
All of these loci exceeded a genome-wide threshold of
5 3 1028. The 3 SNPs identified in the Immunochip
data alone showed no replication (table 2, block 2).

Targeted in silico replication of the 12q24.12
region in INTERSTROKE and VISP strengthened
the association, revealing a new top SNP at this locus
(rs10744777, p 5 7.12 3 10211, odds ratio [OR]
1.10 [1.07–1.13]). A forest plot displaying results
for all cohorts at rs10744777 is shown in figure 1A.
The association was similar across all ischemic stroke
subtypes as measured by effect size, with no evidence
of subtype specificity (table 3).

Conditional analysis of 12q24.12. The significant SNPs
in 12q24.12 spanned 2 Mb of DNA encompassing 16
genes. Across this region, 10 SNPs reached significance
levels of p , 5 3 1028 (figure e-2A). To investigate
whether there was a single signal or multiple signals
across this locus, we performed a conditional analysis
on rs10744777 in those cohorts for which we had
genotypic level data (Immunochip and WTCCC2).
None of the 9 other genome-wide significant SNPs
remained significant after controlling for rs10744777
(table e-3 and figure e-2B). The same effect was
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identified when conditioning on each of the 9 other
SNPs independently (data not shown).

Risk factor defined analysis. A lack of risk factor data in
all controls prevented risk factors from being used in
a conventional stratified analysis. However, to exam-
ine the effect of underlying risk factors on the
12q24.12 region driving the observed association
with all ischemic stroke, we performed a case-only
risk factor defined analysis in which cases were
subdivided on the basis of presence (case) or
absence (control) of 5 available cardiovascular
risk factors—hypertension, diabetes mellitus,
hypercholesterolemia, smoking, and past history of
symptomatic coronary artery disease/ischemic heart
disease. These are defined in the online
supplementary material. Regional analysis of the
Chr12 locus was performed on Immunochip and
WTCCC2 data (a lack of individual level
genotypes prevented this analysis from being
conducted in METASTROKE data). Table 4
shows the lack of association, when classifying cases
and controls by the presence of risk factors, for
rs10744777. Therefore we found no evidence that
the association with stroke was mediated via a single
conventional cardiovascular risk factor.

12q24.12 and intracerebral hemorrhage. We also per-
formed in silico replication of the 12q24.12 locus in
ICH. Examining 1,088 cases of ICH and 1,102

controls revealed no association with rs10744777
(OR 5 1.03, 95% confidence interval 0.90–1.17,
p 5 0.695) (figure 1B).

DISCUSSION Adopting a GWAS approach with
direct genotyping and imputation with the Immuno-
chip array, followed by meta-analysis with existing
GWAS data in ischemic stroke, we identified a
novel risk locus for ischemic stroke on chromosome
12q24.12. Unlike all previous GWAS-identified
ischemic stroke loci, this locus does not appear to
be associated with a single subtype but rather is
associated with ischemic stroke as a whole.

The 12q24.12 locus had been included in the Im-
munochip due to its association with type 1 diabetes
mellitus and was not one of the 3,000 stroke SNPs
included from initial analysis of the WTCCC2 stroke
study.15 Type 1 diabetes, although associated with an
increased risk of stroke and other premature cardio-
vascular disease, is rare and therefore accounts for
only a very small proportion of total stroke risk on
a population basis. In addition to type 1 diabetes, the
12q24.12 locus has been associated with a number of
cardiovascular risk factors, including blood pressure
and cholesterol levels. To investigate whether the
association might be mediated via these risk factors,
we performed a case-only risk factor defined analysis,
which showed no evidence that the association with
stroke was mediated via conventional cardiovascular

Table 2 Top SNP for each locus exceeding a genome-wide threshold of 5e208

rs# ID Locus Gene Subtype IC IC 1 WT 1 MS All data

rs8113518 19q13 KRTDAP All IS 4.20e209a 7.03e202 —

rs2281673 10q26 PLEKHA1 All IS 6.30e209a 5.54e206 —

rs12323577 14q31 — LVD 7.55e219a 4.45e203 —

rs17007400 4q31 ILI5 LVD 8.13e216a 1.10e204 —

rs4597201 13q31 NDF1P2 LVD 3.33e212a 1.07e203 —

rs2930144 3p25 SLC6A11 LVD 6.10e209a 2.71e201 —

rs12240184 1p34 SLC6A9 LVD 2.09e208a 7.14e201 —

rs17696736 12q24.12 NAA25 All IS 1.17e203 6.06e210a —

rs2023938 7p21 HDAC9 All IS 2.29e203 2.37e208a —

rs12646447 4q25 PITX2 All IS 2.39e201 2.07e208a —

rs2107595 7p21 HDAC9 LVD 1.93e205 2.18e214a —

rs6843082 4q25 PITX2 CE 1.96e203 3.31e218a —

rs879324 16q22 ZFHX3 CE 7.03e203 3.10e210a —

rs10744777 12q24.12 ALDH2 All IS 5.48e206 1.24e209a 7.12e211a

Abbreviations: CE 5 cardioembolic; IC 5 Immunochip analysis; IS 5 ischemic stroke; LVD 5 large vessel disease; MS 5

METASTROKE; SNP 5 single nucleotide polymorphism; SVD 5 small vessel disease; WT 5 Wellcome Trust Case Control
Consortium 2 (WTCCC2) analysis.
All data include INTERSTROKE and VISP replication where applicable. Block 1 represents the lead SNP from 7 loci
exceeding 5e28 in Immunochip genome-wide association studies. Block 2 represents the lead SNP from 6 loci after meta-
analysis. Block 3 shows the lead SNP after in silico replication of rs10744777. All SNPs exceeding 1e206 in any analysis
are shown in table e-2.
aDenotes SNPs exceeding genome-wide significance.
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risk factors. Furthermore, given the strong role hyper-
tension plays as a risk factor for hemorrhage, the lack
of association with ICH is additional evidence that
hypertension does not mediate the association.

The mechanism by which this variant might
increase risk of all ischemic stroke without increasing
ICH risk is uncertain. However, as the mechanisms
of arterial disease differ between stroke subtypes, this
finding would be consistent with a systemic risk fac-
tor such as altered coagulation rather than a risk factor
associated with a single ischemic stroke subtype.
Chromosome 12q24.12 has been identified as a
region likely to have undergone positive selection in
Europeans about 3,000–4,000 years ago, and as such
features a complex long-ranging linkage disequilib-
rium (LD) pattern that does not facilitate identifica-
tion of a causal variant among the 10 genome-wide
significant SNPs identified in this study.16,17 How-
ever, the lead SNP, rs10744777, has been identified
as an expression quantitative trait locus for ALDH2 in
monocytes.18 ALDH2 codes for mitochondrial alde-
hyde dehydrogenase 2, which plays a key role in eth-
anol metabolism but has also emerged as a potentially
protective agent in myocardial ischemia.19 The only
nonsynonymous SNP in LD with any of the genome-
wide significant variants is rs3184504 in SH2B3.
rs3184504 has previously been associated with blood
pressure and coronary artery disease/myocardial
infarction.20,21 The missense mutation is classified as
benign (PolyPhen-2) and tolerated (SIFT); however,
it is thought to change 2 transcription factor motifs.
SH2B3 (Src homology 2-B3, also: Lnk) has been
implicated in inflammation and innate immunity
and has been shown to influence endothelial cell
migration and adhesion in vitro.22 Detailed functional
work will be required to elucidate the possibility of
these 2 or any of the other 14 genes as potential
candidates in ischemic stroke. We did perform a con-
ditional analysis on rs3184504 in the Immunochip
and WTCCC2 data, whereby rs10744777 remained
significant (OR 5 1.12, 95% confidence interval
1.06–1.18, p 5 3.52 3 1025). We therefore cannot
exclude the possibility of independent signals in this
region underlying the range of reported significant
phenotypes.

In addition to the identification of chromosome
12q24.12 as a novel stroke locus, we show for the first
time genome-wide significant association of SNPs
in PITX2 and HDAC9 with all ischemic stroke;
previously, associations had only been detected with
cardioembolic and large artery stroke subtypes,
respectively. This is likely to be an effect of increased
sample size, however, as there is no evidence for these
loci being risk alleles in subtypes other than cardioem-
bolic stroke and large artery stroke.

There are a number of limitations to this analysis
that would benefit from further exploration. The
Immunochip is a chip focused preferentially on
immune-related genes. As such, this study cannot
be considered to be a “full” GWAS in a true sense,

Figure 1 Forest plot of rs10744777

Forest plot for rs10744777 in (A) all ischemic stroke cohorts and (B) intracerebral hemor-
rhage cohorts. IC 5 Immunochip; MS 5 METASTROKE; WT 5 Wellcome Trust Case Control
Consortium 2 (WTCCC2).
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since regions of the genome lacking immune-related
genes will not be covered. This effect is negated some-
what by imputation, but it is possible there are other
risk alleles for ischemic stroke that remain to be iden-
tified in a cohort of this size. Although we included
almost 18,000 stroke cases in the largest stroke
GWAS meta-analysis to date, the numbers in indi-
vidual subtypes were smaller; therefore, we cannot
completely exclude the possibility that the association
with chromosome 12q24.12 is predominantly medi-
ated by a single subtype. Although the effect sizes
in the subtype analyses are similar, we are unable to
test the possibility of no significant difference
between them directly due to the use of shared con-
trols between subtypes. This could be overcome by
subtype-specific analyses as a primary endpoint in a
future study. We are also unable to definitively
exclude the possibility of this association being
driven by underlying risk factors we are not powered
to detect. The lack of risk factor data in controls
prevented a more conventional stratified analysis.

However, we performed a case-only risk factor defined
analysis and this showed no evidence that the associa-
tion with stroke was mediated via conventional cardi-
ovascular risk factors. There is also the limitation of all
such case-control studies that controls may become
cases in the future, and in the case of stroke it is pos-
sible controls may have had a clinically undiagnosed
“silent” stroke. Larger sample sizes are one mechanism
that can be used to negate this possibility. In line with
other genetic studies, the ORs associated with this
finding are highly significant but small. Further func-
tional genetic studies will be required to elucidate the
mechanism of action associated with this finding, lead-
ing to patient benefit.

We have identified, through the largest meta-
analysis of ischemic stroke GWAS data to date, a
novel locus on Chr12 increasing risk in all subtypes
of ischemic stroke but not ICH. Previous GWAS as-
sociations with stroke have been subtype specific, and
this represents the first genome-wide association
increasing risk of all ischemic stroke subtypes.

Table 3 Association between rs10744777 and ischemic stroke and its subtypes by analysis stage

Subtype Analysis stage No. cases No. controls p Value OR (95% CI) I2 Het p value

All IS IC 3,420 6,861 5.48e206 1.17 (1.09–1.25) 0.0% 0.46

IC 1 WT 1 MS 15,448 68,865 1.24e209 1.10 (1.06–1.13) 0.0% 0.38

LVD IC 723 6,861 0.02 1.15 (1.02–1.29) 0.0% 0.50

IC 1 WT 1 MS 2,770 56,020 1.36e203 1.11 (1.04–1.18) 0.0% 0.81

CE IC 771 5,716 0.02 1.15 (1.03–1.30) 0.0% 0.38

IC 1 WT 1 MS 3,147 61,856 0.03 1.07 (1.01–1.13) 0.0% 0.62

SVD IC 757 6,861 4.24e206 1.31 (1.17–1.47) 0.0% 0.31

IC 1 WT 1 MS 2,514 58,837 1.47e205 1.15 (1.08–1.23) 39.7% 0.02

Abbreviations: CE 5 cardioembolic; CI 5 confidence interval; IC 5 Immunochip; IS 5 ischemic stroke; LVD 5 large vessel disease; MS 5 METASTROKE;
OR 5 odds ratio; SVD 5 small vessel disease; WT 5 Wellcome Trust Case Control Consortium 2 (WTCCC2).

Table 4 Risk factor defined analysis in Immunochip and WTCCC2 cases

rs10744777 No. cases No. controls OR 95% CI Significance I2 Het p value

Nonstratified (IC 1 WT 1 MS) 15,448 68,865 1.10 1.06–1.13 1.24e209 0.0% 0.38

Nonstratified (IC 1 WT) 6,968 12,833 1.13 1.08–1.19 1.75e207 0.0% 0.34

No. cases with
risk factor

No. cases without
risk factor OR 95% CI Significance I2 Het p value

HT stratified (IC 1 WT) 4,554 2,364 1.00 0.92–1.08 0.91 0.0% 0.82

Diabetes stratified (IC 1 WT) 1,256 5,660 1.02 0.93–1.12 0.70 8.0% 0.20

HC stratified (IC 1 WT) 3,002 3,260 1.01 0.93–1.10 0.81 0.0% 0.85

CAD/IHD stratified (IC 1 WT) 1,786 4,400 1.07 0.98–1.18 0.12 28.0% 0.09

Smoking stratified (IC 1 WT) 3,115 3,457 1.02 0.94–1.11 0.57 0.0% 0.91

Abbreviations: CAD/IHD 5 coronary artery disease/ischemic heart disease; CI 5 confidence interval; HC 5 hypercholesterolemia; HT 5 hypertension; IC 5

Immunochip; MS 5 METASTROKE; OR 5 odds ratio; WT 5 Wellcome Trust Case Control Consortium 2 (WTCCC2).
Cases are defined as presence of the risk factor; controls are defined as absence of the risk factor. A lack of individual level genotypes and risk factor data
for METASTROKE precluded a risk factor analysis in this data.
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