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Abstract—Objective: To review the use of transcranial Doppler ultrasonography (TCD) and transcranial color-coded
sonography (TCCS) for diagnosis. Methods: The authors searched the literature for evidence of 1) if TCD provides useful
information in specific clinical settings; 2) if using this information improves clinical decision making, as reflected by
improved patient outcomes; and 3) if TCD is preferable to other diagnostic tests in these clinical situations. Results: TCD
is of established value in the screening of children aged 2 to 16 years with sickle cell disease for stroke risk (Type A, Class
I) and the detection and monitoring of angiographic vasospasm after spontaneous subarachnoid hemorrhage (Type A,
Class I to II). TCD and TCCS provide important information and may have value for detection of intracranial steno-
occlusive disease (Type B, Class II to III), vasomotor reactivity testing (Type B, Class II to III), detection of cerebral
circulatory arrest/brain death (Type A, Class II), monitoring carotid endarterectomy (Type B, Class II to III), monitoring
cerebral thrombolysis (Type B, Class II to III), and monitoring coronary artery bypass graft operations (Type B to C, Class
II to III). Contrast-enhanced TCD/TCCS can also provide useful information in right-to-left cardiac/extracardiac shunts
(Type A, Class II), intracranial occlusive disease (Type B, Class II to IV), and hemorrhagic cerebrovascular disease (Type
B, Class II to IV), although other techniques may be preferable in these settings.

NEUROLOGY 2004;62:1468–1481

Transcranial Doppler (TCD) is a noninvasive ultra-
sonic technique that measures local blood flow veloc-
ity and direction in the proximal portions of large
intracranial arteries.1 TCD is operator dependent
and requires training and experience to perform and
interpret results. TCD is performed by technologists,
sonographers, and physicians and is interpreted by
neurologists and other specialists.

TCD is used principally in the evaluation and
management of patients with cerebrovascular dis-
ease. Conventional and digital subtraction angiogra-
phy (DSA), where available, constitute the “reference

standard” for evaluating patency and degree of ste-
nosis in intracranial vessels.

The chief advantages of TCD are as follows: It can
be performed at the bedside and repeated as needed
or applied for continuous monitoring; it is frequently
less expensive than other techniques; and dye con-
trast agents are not used. Its chief limitation is that
it can demonstrate cerebral blood flow velocities only
in certain segments of large intracranial vessels, al-
though large-vessel intracranial arterial disease
commonly occurs at these locations. In general, TCD
is most useful when the clinical question pertains to
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those vessel segments. However, in some settings,
TCD can detect indirect effects such as abnormal
waveform characteristics suggestive of proximal he-
modynamic or distal obstructive lesions. This limita-
tion also applies to MR angiography (MRA) and CT
angiography (CTA). Even DSA and conventional an-
giography may be inconclusive if all relevant vessels
are not fully imaged. The reference standard vs TCD
must be appropriate to the clinical setting.

Methods. We reviewed summary statements1,2 and
other articles, based on selection of relevant publica-
tions cited in these new articles and additional Med-
line search through June 2003, using the American
Academy of Neurology rating system (table 1).3

When data were inconclusive, a U rating was given.
Articles reviewed and cited herein reflect a mixture
of diagnostic, therapeutic, or prognostic information
used as the reference standard in individual studies.
Sensitivity and specificity reflect the ability of a di-
agnostic test to detect disease. For the purposes of

this review, ratings of sensitivity and specificity
were operationally defined as excellent (�90%), good
(80 to 89%), fair (60 to 79%), and poor (�60%). We
review the sensitivity and specificity of TCD (table 2)
and transcranial color-coded sonography (TCCS) (ta-
ble 3) for various disease states.

The clinical utility of a diagnostic test may be
operationally defined as the value of the test result
to the clinician caring for the individual patient. In
this sense, value to the clinician refers to the ability
of a diagnostic test to detect the disease process of
interest, influence patient care, or provide prognostic
information when compared with an appropriate ref-
erence standard or in a well-designed clinical trial.
We summarize the clinical utility (table 4) of TCD/
TCCS and focus on the clinical indications for which
conclusions can be drawn.

Results. Conventional or nonimaging TCD. Ischemic
cerebrovascular disease. Sickle cell disease. In
children with sickle cell disease, ischemic cerebral

Table 1 Definitions for classification of evidence

Rating of recommendations
Translation of evidence to

recommendation Rating of diagnostic article Rating of prognostic article

A � established as useful/
predictive or not useful/
predictive for the given
condition in the specified
population.

�1 convincing Class I or
�2 consistent,
convincing Class II
studies.

Class I: evidence provided by
prospective study in broad
spectrum of persons with
suspected condition, using a
“gold standard” to define
cases, where test is applied in
blinded evaluation, and
enabling assessment of
appropriate tests of
diagnostic accuracy.

Class I: evidence provided by
prospective study in broad spectrum
of persons who may be at risk of
outcome (target disease, work status).
Study measures predictive ability
using independent gold standard to
define cases. Predictor is measured in
evaluation masked to clinical
presentation. Outcome is measured
in evaluation masked to presence of
predictor.

B � probably
useful/predictive or not
useful/predictive for the
given condition in the
specified populations.

�1 convincing Class II or
�3 consistent Class III
studies.

Class II: evidence provided by
prospective study in narrow
spectrum of persons with
suspected condition or well-
designed retrospective study
of broad spectrum of persons
with suspected condition (by
“gold standard”) compared
with broad spectrum of
controls where test is applied
in blinded evaluation and
enabling assessment of
appropriate tests of
diagnostic accuracy.

Class II: evidence provided by
prospective study of narrow spectrum
of persons who may be at risk for
having the condition, retrospective
study of broad spectrum of persons
with condition compared with broad
spectrum of controls. Study measures
prognostic accuracy of risk factor
using acceptable independent gold
standard to define cases. Risk factor
is measured in evaluation masked to
the outcome.

C � possibly
useful/predictive or not
useful/predictive for the
given condition in the
specified population.

�2 convincing and
consistent Class III
studies.

Class III: evidence provided by
retrospective study where
either persons with
established condition or
controls are of narrow
spectrum and where test is
applied in blinded evaluation.

Class III: evidence provided by
retrospective study where persons
with condition or controls are of
narrow spectrum. Study measures
predictive ability using independent
gold standard to define cases. Risk
factor measured in evaluation
masked to outcome.

D � data inadequate or
conflicting. Given
current knowledge, test/
predictor unproven.

— Class IV: any design where test
is not applied in blinded
fashion or evidence provided
by expert opinion or
descriptive case series.

Class IV: any design where predictor is
not applied in masked evaluation or
evidence by expert opinion, case
series.
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infarction is associated with an occlusive vasculopa-
thy involving the distal intracranial internal carotid
artery (ICA) and the proximal portions of the middle
(MCA) and anterior (ACA) cerebral arteries. One
large cohort study with long-term follow-up showed
that elevated time-averaged mean maximum blood
flow velocity of �200 cm/s in the ICA or MCA by
TCD is strongly associated with stroke risk.4 With
use of this flow velocity criterion, the Stroke Preven-
tion Trial in Sickle Cell Anemia showed that periodic
blood transfusion therapy to lower the hemoglobin S
concentration to �30% of total hemoglobin concen-

tration in children between the ages of 2 and 16
years resulted in a 92% reduction in stroke risk.5

TCD screening of children with sickle cell disease
between the ages of 2 and 16 years is effective for
assessing stroke risk (Type A, Class I evidence), al-
though the optimal frequency of testing is unknown
(Type U).

Right-to-left cardiac shunts. Paradoxical embo-
lism via a patent foramen ovale (PFO) is a cause of
stroke in young adults.6-9 The presence of an atrial
septal aneurysm may increase the stroke risk of a
PFO with right-to-left shunting.8,9 Data show a high

Table 2 Accuracy of TCD ultrasonography by indication

Indication Sensitivity, % Specificity, % Reference standard
Evidence/

Class

Sickle cell disease 86 91 Conventional angiography A/I
Right-to-left cardiac shunts 70–100 �95 Transesophageal

echocardiography
A/II

Intracranial steno-occlusive disease Conventional angiography
Anterior circulation 70–90 90–95 B/II–III
Posterior circulation 50–80 80–96 B/III

Occlusion
MCA 85–95 90–98 B/III
ICA, VA, BA 55–81 96 B/III

Extracranial ICA stenosis Conventional angiography
Single TCD variable 3–78 60–100 C/II–III
TCD battery 49–95 42–100 C/II–III
TCD battery and carotid duplex 89 100 C/II–III

Vasomotor reactivity testing
�70% extracranial ICA stenosis/occlusion Conventional angiography,

clinical outcomes
B/II–III

Carotid endarterectomy EEG, MRI, clinical
outcomes

B/II

Cerebral microembolization Experimental model,
pathology, MRI,
neuropsychological tests

General B/II–IV
Coronary artery bypass graft surgery microembolization B/II–III
Prosthetic heart valves C/III
Cerebral thrombolysis Conventional angiography,

MR angiography, clinical
outcome

B/II–III

Complete occlusion 50 100
Partial occlusion 100 76
Recanalization 91 93
Vasospasm after spontaneous subarachnoid hemorrhage: Conventional angiography I –II

Intracranial ICA 25–30 83–91
MCA 39–94 70–100
ACA 13–71 65–100
VA 44–100 82–88
BA 77–100 42–79
PCA 48–60 78–87

Vasospasm after traumatic subarachnoid hemorrhage Conventional angiography I –III
Cerebral circulatory arrest and brain death 91–100 97–100 Conventional angiography,

EEG, clinical outcome
II

TCD � transcranial Doppler; MCA � middle cerebral artery; ICA � internal carotid artery; VA � vertebral artery; BA � basilar ar-
tery; ACA � anterior cerebral artery; PCA � posterior cerebral artery.
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correlation between contrast-enhanced TCD and
contrast-enhanced transesophageal echocardiogra-
phy (TEE), with essentially 100% concordance for
the “clinically significant” high number of particles
shunted. Nevertheless, the sensitivity and specificity
of contrast TCD for detecting right-to-left cardiac or
extracardiac (pulmonary arteriovenous) shunts may
vary by center, protocol, and diagnostic criteria.10-12

The routine performance of the Valsalva maneuver
during testing can improve sensitivity and specific-
ity. The sensitivity of contrast TCD can also be im-
proved by using a higher volume of agitated saline
(10 mL instead of 5 mL), use of Echovist (especially
Echovist-300) instead of agitated saline, or repeating
the Valsalva maneuver if the initial result is
negative.12

Contrast TCD is comparable with contrast TEE
for detecting right-to-left shunts due to PFO (Type A,
Class II evidence). However, TEE is better than con-

trast TCD because it provides direct anatomic infor-
mation regarding the site and nature of the shunt or
presence of an atrial septal aneurysm. Whereas the
number of microbubbles reaching the brain can be
quantified by TCD, the therapeutic impact of this
additional information is unknown (Type U).

Intracranial steno-occlusive disease. Intracranial
atherosclerosis is responsible for up to 10% of TIA
and strokes.13,14 Stenosis and occlusion of the ICA
siphon, proximal (M1) segment of the MCA, intracra-
nial vertebral artery (VA), proximal basilar artery
(BA), and proximal (P1) segment of the posterior ce-
rebral artery (PCA) can be reliably detected by
TCD.1,15-31 The relative performance of TCD vs MRA,
conventional angiography, or DSA varies by center,
characteristics and prevalence of disease in the
study population, diagnostic criteria, and technical
expertise. Sensitivity, specificity, positive predictive
value, and negative predictive value of TCD are gen-
erally higher in the anterior circulation than in the
vertebrobasilar circulation owing to more variable
anatomy and technical difficulties in insonation of
the vertebrobasilar circulation.

Data are beginning to define TCD criteria for
�50% stenosis of large intracranial arteries.15,26 In-
tracranial arterial stenotic lesions in the internal ca-
rotid distribution are dynamic and can evolve over
time, with increasing or decreasing flow velocities
and appearance of new collateral patterns, the latter

Table 3 Accuracy of TCCS by indication

Indication Sensitivity, % Specificity, % Reference standard
Evidence/

Class

TCCS, with/without contrast enhancement Conventional angiography,
pathology

II–IV

ACoA collateral flow 100 100

PCoA collateral flow 85 98

Intracranial steno-occlusive lesions

Any Up to 100 Up to 83

�50% stenosis

MCA 100 100

ACA 100 100

VA 100 100

BA 100 100

PCA 100 100

Parenchymal hypoechogenicity
in MCA distribution

69 83 CT scan III

Vasospasm after spontaneous subarachnoid hemorrhage: Conventional angiography II–IV

Intracranial ICA 100 97

MCA 100 93

ACA 71 85

Intracerebral hemorrhage 94 95 CT scan

TCCS � transcranial color-coded sonography; ACoA � anterior communicating artery; PCoA � posterior communicating artery;
MCA � middle cerebral artery; ACA � anterior cerebral artery; VA � vertebral artery; BA � basilar artery; PCA � posterior cerebral
artery; ICA � internal carotid artery.

Table 4 Definitions for clinical utility

1. Able to provide information and clinical utility established.

2. Able to provide information and clinical utility, compared with
other diagnostic tools, remains to be determined.

3. Able to provide information, but clinical utility remains to be
determined.

4. Able to provide information, but other diagnostic tests are
preferable in most cases.
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suggesting further hemodynamic compromise distal
to the stenotic lesion.27-29 In two recent studies in
small, highly selected populations28,29 using peak sys-
tolic29 or mean flow28 velocities and variable noninva-
sive criteria for change in degree of stenosis,
progression of MCA stenosis was associated with
new ipsilateral stroke or TIA28 or major vascular
events.28,29 Data are insufficient to establish TCD cri-
teria for �50% stenosis or for progression of stenosis
in intracranial arteries (Type U).

Acute cerebral infarction. Cerebral angiography
shows acute occlusion in 76% of acute MCA territory
infarcts within 6 hours of stroke onset.30 TCD can
detect these angiographic occlusions with high
(�90%) sensitivity, specificity, positive predictive
value, and negative predictive value.20,21,26,30 In addi-
tion, TCD can detect ICA siphon, VA, and BA occlu-
sions with fair to good (70 to 90%) sensitivity and
positive predictive value and excellent specificity and
negative predictive value occlusions.31

Intracranial arterial occlusions detected by TCD
are associated with poor neurologic recovery, disabil-
ity, or death after 90 days,22,23 whereas normal re-
sults predict early improvement.25,32 In patients with
acute ICA territory stroke, TCD findings, stroke se-
verity at 24 hours, and CT lesion size were indepen-
dent predictors of outcome after 30 days.22 When
combined with carotid duplex sonography, the pres-
ence and total number of arteries with suspected
steno-occlusive lesions (especially intracranial) by
TCD in patients with TIA or ischemic stroke were
associated with an increased risk of further vascular
events (usually stroke) and death within 6 months.24

TCD-detected M1 MCA occlusions within 6 hours of
stroke onset may be an independent predictor of
spontaneous hemorrhagic transformation, with a
positive predictive value of 72%.33 A recent study34

showed that delayed (�6-hour) spontaneous recana-
lization was independently associated (odds ratio
[OR] � 8.9, 95% CI � 2.1 to 33.3) with hemorrhagic
transformation.

TCD is probably useful for the evaluation of pa-
tients with suspected intracranial steno-occlusive
disease, particularly in the ICA siphon and MCA
(Type B, Class II to III evidence). The relative value
of TCD compared with MRA or CTA remains to be
determined (Type U). Data are insufficient to give a
recommendation regarding replacing conventional
angiography with TCD (Type U).

Extracranial ICA stenosis. TCD can detect the
hemodynamic consequences of severe extracranial
ICA stenosis, such as reversal of the direction of
ophthalmic artery flow, presence of collateral flow
patterns, absence of ophthalmic or carotid siphon
flow, and reduced MCA flow velocity and pulsatil-
ity.34,35 For patients with angiographically or patho-
logically confirmed stenosis of �70%, accuracy varies
according to diagnostic criteria. Use of single TCD
measurements or a battery of TCD measurements
has variable sensitivity and specificity. However,
when highly specific carotid duplex criteria are

added, sensitivity and specificity are considerably
improved.35-37

TCD is possibly useful for the evaluation of severe
extracranial ICA stenosis or occlusion (Type C, Class
II to III evidence).

Vasomotor reactivity testing. TCD evaluation of
large basal conducting vessels, which remain rela-
tively constant in diameter during moderate pres-
sure fluctuations or changes in microcirculatory
function, can provide an index of relative flow
changes in response to small blood pressure changes
and physiologic stimuli to assess autoregulation and
vasomotor reactivity (VMR) of the distal cerebral ar-
teriolar bed. VMR testing techniques of static (i.e., at
rest) or dynamic (i.e., after provocative stimuli) cere-
bral autoregulation include measuring changes in
flow velocities following 1) hemodynamic stimuli
(rapid leg cuff deflation, Valsalva maneuver, deep
breathing, ergometric exercise, head-down tilting, or-
thostasis and lower body negative pressure, beat-to-
beat spontaneous transient pressor and depressor
changes in mean arterial pressure), 2) CO2 inhala-
tion (hypercapnia/hyperventilation hypocapnia), 3)
the breath-holding index (BHI), 4) acetazolamide in-
jection, and 5) the transient hyperemia response and
its variants.38-46

VMR testing techniques with TCD have been used
to evaluate patients with symptomatic or asymptom-
atic extracranial ICA stenosis or occlusion,38-45 cere-
bral small-artery disease, head injury, and
aneurysmal subarachnoid hemorrhage (SAH).46 Al-
though TCD may detect abnormalities of cerebral
hemodynamics (increased or decreased pulsatility) in
patients with risk factors for or symptoms of cerebro-
vascular disease,39 the value of TCD evaluation of
cerebral hemodynamic impairment and stroke risk
has recently been questioned.47

In a recent study43 of patients with asymptomatic
70% extracranial ICA stenosis, the annual ipsilateral
ischemic event rate was 4.1% with normal BHI and
13.9% with impaired BHI. In patients with severe
(�70%) symptomatic ICA extracranial stenosis,
VMR in the ipsilateral MCA is significantly re-
duced.40 Patients with impaired collateral blood flow
patterns may have the greatest reduction in VMR.41

One recent study39 showed that exhausted VMR in
the ipsilateral MCA was an independent predictor of
the occurrence of ipsilateral TIA and stroke (OR �
14.4, 95% CI � 2.63 to 78.74). In patients with
asymptomatic extracranial ICA occlusion, a BHI of
�0.69 reliably distinguishes pathologically reduced
from normal cerebral VMR and identifies patients at
risk for stroke and TIA.42

TCD vasomotor reactivity testing is considered
probably useful for the detection of impaired cerebral
hemodynamics in patients with asymptomatic severe
(�70%) stenosis of the extracranial ICA, patients
with symptomatic or asymptomatic extracranial ICA
occlusion, and patients with cerebral small-artery
disease (Type B, Class II to III evidence). How the
results from these techniques should be used to in-

1472 NEUROLOGY 62 May (1 of 2) 2004

RETIR
ED



RETIR
ED

fluence therapy and affect patient outcomes remains
to be determined (Type U).

Detection of cerebral microembolic signals. The
physics and technical aspects of ultrasonic detection
of microembolic signals or “high-intensity transient
signals” (“HITS”) by TCD have recently been re-
viewed.1,48,49 Particulate (solid, fat) and gaseous ma-
terials in flowing blood have different acoustic
impedance properties than surrounding red blood
cells. The Doppler ultrasound beam is both reflected
and scattered at the interface between the embolus
and blood, resulting in an increased intensity of the
received Doppler signal. The hierarchy of backscat-
ter of the ultrasound, in descending order, is gaseous
emboli, solid emboli, and normal-flowing blood (in-
cluding transient red blood cell aggregates).

Microembolic signals have been detected in pa-
tients with asymptomatic and symptomatic high-
grade internal carotid stenosis, prosthetic cardiac
valves, myocardial infarction, atrial fibrillation, aor-
tic arch atheroma, fat embolization syndrome, and
retinal or general cerebral vascular disease. In addi-
tion, these signals occur in coronary catheterization,
coronary angioplasty, direct current cardioversion,
cerebral angiography, carotid endarterectomy (CEA),
carotid angioplasty, and cardiopulmonary bypass.
TCD can be used to localize the embolic source or
monitor the effects of antithrombotic treatment in
patients with atherosclerotic cerebrovascular dis-
ease.50 In patients with high-grade carotid stenosis,
sources of asymptomatic microembolic signals may
include ulcerated plaques51 and microscopic platelet
aggregates and fibrin clots.52 Asymptomatic cerebral
microembolization was associated with an increased
risk of further cerebral ischemia (OR � 8.10, 95%
CI � 1.58 to 41.57) in this setting.51

Comparison between studies is difficult because of
differences in diagnostic criteria and detection
threshold, different instruments, different instru-
ment settings, nature and severity of disease, vari-
ability in occurrence of microembolic signals, time
between last symptom and detection of microembolic
signals, and type of treatment.1,49 Interobserver
agreement for microembolic signal detection and de-
termination of signal type is variable; a higher detec-
tion threshold results in higher specificity and
intercenter agreement.48 New hardware and soft-
ware technical capabilities may help detection of mi-
croembolic signal type and discrimination from
artifact. However, accurate and reliable character-
ization of embolus size and composition is not possi-
ble with current technology. In addition, data have
not shown that detection of microembolic signals
leads to improved patient outcomes.

TCD is probably useful to detect cerebral micro-
embolic signals in a wide variety of cardiovascular/
cerebrovascular disorders/procedures (Type B, Class
II to IV evidence). However, current data do not sup-
port the use of TCD for diagnosis or for monitoring
response to antithrombotic therapy in ischemic cere-
brovascular disease (Type U).

Perioperative and periprocedural monitoring.
CEA. The principal cause of stroke following CEA, par-
ticularly in the postoperative phase, is embolism from the
operative site.53 TCD monitoring of the ipsilateral MCA
during CEA allows real-time readout of velocity changes
in the basal cerebral arteries. Although a precise percent-
age decrease in flow velocity from baseline or a velocity
threshold that predisposes to cerebral ischemia has not
been established, a large decrease in velocities intraoper-
atively is considered an indication for pharmacologic
blood pressure augmentation, shunt placement, or repair
of shunt kinking or thrombosis. In addition, flow velocity
changes during cross-clamping correlate with stump
pressure measurements.54 Reports of combined intraoper-
ative TCD monitoring and EEG monitoring show that
although there is high overlap between low MCA flow
velocities and ipsilateral EEG slowing, neither technique
may identify all candidates for shunting or prevent all
strokes.54-56 Hemodynamic changes following CEA in-
clude an improvement in MCA, ACA, and ophthalmic
flow velocities, resolution of side-to-side MCA flow veloc-
ity asymmetries, and restoration of cerebrovascular vaso-
reactivity to CO2 or acetazolamide challenge.40,57,58

Microembolic signals most commonly occur during
the dissection phase intraoperatively, during shunt-
ing and unclamping, during wound closure, and in
the first few hours postoperatively.59-66 The number
of microembolic signals during dissection correlates
best with new ischemic lesions seen on MRI62 and
postoperative cognitive deterioration.59 The presence
of �50 microembolic signals/hour during the early
postoperative phase is reported to predict the devel-
opment of ipsilateral focal cerebral ischemia.60 TCD-
detected microembolic signals during dissection and
wound closure, �90% MCA velocity decrease at
cross-clamping, and �100% pulsatility index in-
crease at clamp release have been associated with
intraoperative stroke.63 In one study of 500 CEA op-
erations monitored with TCD,53 the occurrence of
stroke decreased from 7% during the first 100 TCD-
monitored operations to 2% in the last 400 TCD-
monitored operations. In another report, a policy of
quality control assessment (TCD monitoring and
completion angioscopy) substantially reduced the oc-
currence of intraoperative stroke.64 Postoperative
TCD monitoring may identify patients at risk for
carotid thrombosis59,60 or ipsilateral hemispheric is-
chemia who may benefit from Dextran-40 thera-
py.61,66 TCD may also be used to noninvasively
monitor the effect of novel antiplatelet agents on the
frequency of microembolic signals following CEA.67

CEA monitoring with TCD can provide important
feedback pertaining to hemodynamic and embolic
events during and after surgery that may help the
surgeon take appropriate measures at all stages of
the operation to reduce the risk of perioperative
stroke. TCD monitoring is probably useful during
and after CEA in circumstances where monitoring is
felt to be necessary (Type B, Class II to III evidence).

Coronary artery bypass graft surgery. Postopera-
tive neurologic complications such as cerebral infarc-
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tion and encephalopathy occur in up to 15% of
patients who undergo coronary artery bypass graft
(CABG) surgery; up to 70% of patients have neuro-
psychological deficits.68-72 The risk of stroke after
CABG can be predicted based on characteristics
known before surgery.70-72

TCD monitoring can document flow velocity
changes in all phases of the operation. There have
been no reports of correlations between changes in
flow velocities or CO2 reactivity and neurologic out-
come. Cerebral microembolic signals of all types may
be detected at all phases of the operation, especially
during aortic cannulation, aortic cross-clamping, and
clamp removal.73 There is a significant correlation
between the number of emboli detected by TCD and
TEE.73 TCD demonstration of the presence of micro-
embolic signals, with higher number of microembolic
signals associated with postoperative neuropsycho-
logical abnormalities, led to the acceptance of membrane
over bubble oxygenators during cardiopulmonary by-
pass.74 Recent data suggest that distal aortic arch cannu-
lation75 or off-pump technique76,77 may be associated with
lower numbers of cerebral microemboli.

TCD is possibly effective in documenting changes
in flow velocities and CO2 reactivity in patients who
undergo CABG (Type C, Class III evidence). TCD is
probably useful for the detection and monitoring of
cerebral microemboli in patients undergoing CABG
(Type B, Class II to III evidence). Data are presently
insufficient regarding the clinical utility of this infor-
mation (Type U).

Cerebral thrombolysis. Occlusions of the MCA
may recanalize according to TCD criteria in 65 to
89% of patients within 1 to 3 weeks after stroke
onset.30,33,78,79 Sonographic findings that may be ob-
served during spontaneous or induced recanalization
of acute MCA occlusions vary according to the pat-
tern and extent of occlusive lesion(s), extent of collat-
eral circulation, rapidity of recanalization,
occurrence of reocclusion, and intensity of TCD
monitoring.80-83 For example, TCD can differentiate
between tandem extracranial ICA/MCA lesions and
isolated MCA occlusions; the former may have collat-
eral flow patterns and stenotic terminal ICA sig-
nals.84 Sensitivity and specificity of TCD for
detection of angiographic recanalization are gener-
ally good to excellent for complete occlusion, partial
occlusion, and recanalization, although the sensitiv-
ity for complete occlusion is low.80 Recanalization
within 5 to 8 hours, especially when accompanied by
good collaterals, has been associated with more rapid
and improved outcomes.78,81 The presence of residual
flow signals such as systolic spikes, blunted or damp-
ened waveforms, thrombus vibration, microembolic
signals, or transient flow changes before thromboly-
sis is associated with an increased likelihood of com-
plete recanalization.85 A recent TCD study of
patients with MCA occlusion treated with IV throm-
bolysis82 showed normal restoration of flow in 58% of
patients with dramatic recovery and only 14% of pa-
tients without dramatic recovery. One recent 1:2

case-control study of cardioembolic stroke86 showed
that use of IV recombinant tissue plasminogen acti-
vator therapy was associated with significantly
higher 6-hour recanalization rate (66 vs 15%) and
significantly reduced infarct volume (50.2 � 40.3 vs
124.8 � 81.6 cm3) compared with controls. A recent
small randomized trial87 comparing IV thrombolysis
(n � 14) and IV thrombolysis with continuous ultra-
sonic monitoring (n � 11) in acute MCA occlusion
suggested a higher grade of recanalization at 1 hour
and improved clinical outcome at 90 days in patients
receiving continuous ultrasonic monitoring. Issues of
the use of TCD for hyperacute ischemic stroke pa-
tient selection for, as well as efficacy and safety of
ultrasonic monitoring of, cerebral thrombolysis are
currently being explored in the Combined Lysis of
Thrombus in Brain Ischemia with Transcranial Ul-
trasound and Systemic TPA (CLOTBUST) trial.

TCD is probably useful for monitoring thromboly-
sis of acute MCA occlusions (Type B, Class II to III
evidence). Present data are insufficient to either de-
fine the optimal frequency of TCD monitoring for clot
dissolution and enhanced recanalization or to influ-
ence therapy (Type U).

Monitoring in the neurology/neurosurgery inten-
sive care unit. SAH. Delayed narrowing or vaso-
constriction of intracerebral arteries, or vasospasm
(VSP), occurs in diverse clinical settings. In the Tim-
ing of Aneurysm Surgery Study, VSP-related ische-
mic neurologic deficits were the major cause of
mortality (7.2%) and morbidity (6.3%) in survivors of
aneurysmal SAH.88 Angiographic VSP, detectable in
21 to 70% of patients with aneurysmal SAH, can
occur in all intracranial arteries, either proximally or
distally. Clinical syndromes believed to be attribut-
able to severe, flow-reducing VSP in each intracra-
nial vessel have been described. There is an inverse
relation between cerebral blood flow, cerebral blood
flow velocities, and age.89,90 Neurologic deterioration
in this setting may be associated with a number of
disorders, and the presence of large-vessel angio-
graphic VSP does not always lead to neurologic
deterioration.

Spontaneous SAH. In general, TCD flow velocity
findings in the MCA correlate well with clinical
grade, CT localization of SAH clot, and the time
course of angiographic VSP. However, these correla-
tions are imperfect. There is a significant direct cor-
relation between VSP severity after spontaneous
SAH (sSAH) and flow velocities in cerebral arteries,
although anatomic and technical factors weaken the
association for the intracranial ICA and ACA.91-98 For
the MCA, flow velocities of �120 or �200 cm/s, a
rapid rise in flow velocities, or a higher Lindegaard
(VMCA/VICA) ratio (6 � 0.3) reliably predict the ab-
sence or presence of clinically significant angio-
graphic MCA VSP, although prediction of neurologic
deterioration is problematic.91,92 Similar data for the
other intracranial vessels are not available. A vari-
ety of factors such as technical issues, vessel anat-
omy, age, intracranial pressure (ICP), mean arterial
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blood pressure, hematocrit, arterial CO2 content, col-
lateral flow patterns, and response to therapeutic
interventions influence flow velocities and must be
taken into account when interpreting TCD results in
this setting.

The sensitivity and specificity of TCD vs cerebral
angiography for the detection of VSP after sSAH in
the proximal portions of each intracranial artery
have been summarized. In a recent meta-analysis,91

only 5 of 26 evaluable TCD studies93-97 met at least 7
of 10 criteria for methodologically high-quality stud-
ies. In general, data vary by vessel and by diagnostic
criteria, disease prevalence, and timing of correlative
angiography. Specific causes of false-positive and
false-negative TCD examinations have been identi-
fied for each intracranial vessel95-99 and their impact
on the approach to test performance and interpreta-
tion described. TCD flow velocity criteria appear
most reliable for detecting angiographic MCA VSP
and BA VSP. The specificity of TCD can be optimized
by increasing the flow velocity criteria and sensitiv-
ity by the timing of the angiographic correlation for
the diagnosis of VSP.94,95

TCD is useful in monitoring the temporal course
of angiographic VSP after sSAH. Although no ade-
quate study has been conducted, TCD is thought to
be valuable in the day-to-day evaluation of sSAH
patients in VSP and to assess the effect and durabil-
ity of neuroradiologic interventions.100,101 TCD has
been used to detect angiographic VSP following pro-
phylactic transluminal balloon angioplasty in sSAH
patients at high risk of developing VSP,102 as a non-
invasive surrogate endpoint, or to demonstrate bio-
logic effects of treatments for vasoconstriction or
VSP in uncontrolled trials of pharmacologic thera-
pies for eclampsia and sSAH.103-106 Data are insuffi-
cient to make a recommendation regarding the use
and method(s) of autoregulation testing for predic-
tion of the risk of delayed cerebral ischemia. In gen-
eral, TCD is not useful for the detection of VSP
directly affecting the convexity or vertically oriented
branches of the intracranial arteries distal to the
basal cisterns,98,99 although the presence of VSP at
these sites may be inferred in some cases by indirect
Doppler waveform observations (e.g., decreased dia-
stolic flow, increased pulsatility, side-to-side differ-
ences in pulsatility indexes, etc.).

TCD is useful for the detection and monitoring of
angiographic VSP in the basal segments of the intra-
cranial arteries, especially the MCA and BA, follow-
ing sSAH (Type A, Class I to II evidence). More data
are needed to show if TCD affects clinical outcomes
in this setting (Type U).

Traumatic SAH. CT evidence of SAH following
closed head injury occurs in 4 to 63% of patients.107-

112 Patients with traumatic SAH (tSAH) may develop
delayed arterial narrowing consistent with VSP,
with the site of severe VSP correlating with the site
of tSAH. The VSP associated with tSAH is more
common with massive bleeding and may lead to focal
neurologic deficits in any vascular distribution.

Closed head injury patients with tSAH or hemody-
namically significant VSP with reduced cerebral
blood flow have a significantly worse prognosis
(death, persistent vegetative state, severe disability)
than patients without tSAH or VSP.107-109,112

There are a number of studies of TCD monitoring
of patients with severe head injury.108-112 Patients
with increasing severity of head injury will have sig-
nificantly lower MCA velocities at hospital admis-
sion.109 VSP has been defined in various ways, but
the sensitivity and specificity of TCD vs angiography
for the detection of VSP in intracranial arteries fol-
lowing closed head injury have not been reported.
Hemodynamically significant VSP, as defined by ab-
normal MCA velocities (�120 cm/s), VMCA/VICA of
�3.00, MCA spasm index (ratio of MCA flow veloci-
ties to hemispheric cerebral blood flow) of �3.4, BA
velocities of �90 cm/s, or BA spasm index (ratio of
BA flow velocities to global cerebral blood flow) of
�2.5, has been associated with a significantly worse
outcome (especially for the spasm indexes).112 In the
German tSAH Study,111 patients receiving nimodip-
ine tended to have lower MCA velocities. Monitoring
with TCD and jugular bulb oxygen saturation may
be used to optimize ventilatory and pharmacologic108

management of patients with severe closed head in-
jury. Persistently low MCA velocities have been as-
sociated with early (�72 hours) death.108

TCD is probably useful for the detection of VSP
and cerebral hemodynamic impairment following
tSAH (Type B, Class I to III evidence). Data on sen-
sitivity, specificity, and predictive value of TCD for
VSP after tSAH are needed. Data are insufficient
regarding how use of TCD affects clinical outcomes
after tSAH (Type U).

Increased ICP and cerebral circulatory arrest.
There is a qualitative relationship between progres-
sive increases in ICP and the evolution of abnormal
TCD waveforms, assuming a constant arterial CO2
content and a constant degree of distal vasoconstric-
tion. Pulsatility changes occur when cerebral perfu-
sion pressure is �70 mm Hg. The earliest sign of
increased ICP is increased pulsatility, followed by
progressive reduction in diastolic flow velocities and
reduction in mean flow velocities. As regional or gen-
eralized ICP elevation becomes increasingly ex-
treme, diastolic flow reaches zero, followed by an
alternating flow pattern with retrograde diastolic
flow, disappearance of diastolic flow, appearance of
small systolic spikes, and eventually no flow. Once
the reverberating flow pattern appears, cerebral
blood flow disappears on angiography and brain
death is likely. Evolutionary changes may occur over
a period of minutes to hours.1,113-117

Brain death is a clinical diagnosis that can be
supported by TCD evidence of absent cerebral blood
flow (zero net flow velocity) at all insonation sites.
Diagnostic criteria for cerebral circulatory arrest/
brain death by TCD have been published, with sensi-
tivity and specificity of 91 to 100% and 97 to 100%,
respectively.113-116 The specificity is imperfect as ab-
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sence of MCA flow may be transient or BA flow may
still be present; when systolic spikes are present in
multiple intracranial compartments, recovery is un-
likely.115 The most stringent criteria require similar
waveform patterns to be present in the extracranial
common carotid artery, ICA, and VA.117 TCD is espe-
cially helpful in patients with suspected brain death
who have loss of brainstem function due to isolated
brainstem lesions or who received sedative or para-
lytic agents that render clinical examination or in-
terpretation of EEG difficult. TCD can confirm the
clinical diagnosis of brain death.118 TCD is a useful
adjunct test for the evaluation of cerebral circulatory
arrest associated with brain death (Type A, Class II
evidence).

TCCS or imaging TCD. TCCS is a relatively
new, bedside noninvasive technique that shows a
real-time two-dimensional depiction of cerebral pa-
renchymal and intracranial vascular structures.119-125

Compared with conventional TCD, there is more ac-
curate demonstration of vascular anatomy, because
imaging of smaller arterial branches and venous
structures is feasible. Depending on the vessel, the
uncorrected insonation angle may be as high as
73°.120,121,124 As a result, angle-corrected flow veloci-
ties may be as much as 25 to 30% higher than non-
angle-corrected flow velocities.120-122,124 Age-specific
normative data have been published.124,126,127 In Cau-
casian atherosclerotic patients over age 60, vessel
detection rates are lower and blood flow velocities
are higher in women.123 In general, flow velocity
measurements are highly reproducible. However, er-
rors in flow velocity measurement in two dimensions
may still occur because of the three-dimensional
course of intracranial arteries and the possibility of
large insonation angles.121 Use of the lateral frontal
bone window may help with detection of posterior
communicating artery flow and flow direction.128

As with conventional TCD, a major limitation of
TCCS is insufficient transtemporal ultrasound beam
penetration due to hyperostosis of the skull.119-126

Transpulmonary echocontrast agents (ECA) increase
the Doppler signal intensity and improve the signal-
to-noise ratio for transcranial insonation.129 The use
of an ECA enhances the ability of TCCS to visualize
the number and length of basal cerebral arteries and
second- or third-order branches of major cerebral ar-
teries,126 particularly in patients with poor transtem-
poral windows.130-135 The use of ECA may increase
the peak systolic velocities in a cerebral artery seg-
ment by as much as 26 � 10% and produce “bubble
noise.”136,137 However, if non-contrast-enhanced
TCCS does not reveal any intracranial structures
such as the midbrain or any cerebral artery, then
contrast-enhanced TCCS will not be diagnostically
conclusive.130,133 A recent power-based TCCS study of
687 consecutive patients138 showed that an indication
for use of an ECA was present in 8.8% of cases.
There was a diagnostic result in 75% of cases during
transtemporal insonation and 81% of cases during
transforaminal insonation. ECA are currently used

in clinical practice in Germany but have not been
approved by the U.S. Food and Drug Administration.

Ischemic cerebrovascular disease. In patients
with ischemic cerebrovascular disease, contrast-
enhanced TCCS may be useful in several ways. Mor-
phologic data suggest that the threshold arterial
diameter allowing for functional collateral flow in
the circle of Willis is between 0.4 and 0.6 mm, which
can be detected by TCCS.139 TCCS can detect pres-
ence and direction of collateral flow in the anterior
(ACoA) and posterior (PCoA) communicating arteries
in patients with hemodynamically significant (typi-
cally �80%) ICA stenosis or occlusion, with improve-
ment to as much as 96% diagnostic confidence
following use of ECA.134-140 Sensitivity and specificity
for the detection of ACoA and PCoA collateral flow
are good to excellent.141 Compared with the temporal
bone window, use of the lateral frontal bone window
appears to increase the detection of intracranial
cross-flow patterns via the PCoA.128

Limited data suggest that intracranial steno-
occlusive disease,26,130-133 including �50% diameter
reduction stenosis27 or distinction between vessel pa-
tency or occlusion with reduced flow velocity,132,133

can be detected more reliably with contrast-
enhanced TCCS than with TCD. TCCS can demon-
strate areas of parenchymal hypoechogenicity in the
MCA distribution suggestive of ischemic cerebral in-
farction shown on brain CT scan, accompanied by
abnormal blood flow velocity pattern, with fair to
good sensitivity and specificity.141,142 Spontane-
ous131,135,141 and thrombolytic therapy-induced135,142

recanalization, as compared with DSA, MRA, or CTA
in small numbers of patients,142 can be monitored by
serial TCCS examinations, with recanalization being
more common in patients treated with thrombolytic
therapy.135 Severe neurologic deficits and large MCA
territory ischemic infarctions have been associated
with sonographic signs of MCA occlusion or de-
creased MCA flow velocities within 12 hours of
stroke onset,133 whereas a patent MCA without re-
duced MCA flow velocities may be predictive of early
clinical improvement.132 (Contrast-enhanced) TCCS
is probably useful in the evaluation and monitoring
of patients with ischemic cerebrovascular disease
(Type B, Class II to IV evidence).

Hemorrhagic cerebrovascular disease. Most of
the experience with (contrast-enhanced) TCCS in
hemorrhagic cerebrovascular disease is in patients
with aneurysmal SAH.143-148 A marked increase in
the echodensity of the basal cisterns or ventricular
system indicates the presence of blood in the sub-
arachnoid or intraventricular space, respectively.147

TCCS can detect 76 to 91% of nonthrombosed intra-
cranial aneurysms of �6 mm in size144-147; use of ECA
or power Doppler may increase the rate of detection,
including aneurysms �5 mm in size.146,147 TCCS may
detect VSP in major branches of the circle of Willis
following SAH.143,148 Limited data suggest that sensi-
tivity and specificity of TCCS for detection of intra-
cranial ICA and MCA VSP are excellent.148 However,
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no data exist to compare the utility of (contrast-
enhanced) TCCS with conventional TCD in this
setting.

Parenchymal hematomas larger than 1 mL in size
may be detected by TCCS, although smaller or corti-
cal lesions may be missed.149 Acute (�5 days old)
hematomas may appear as echodense lesions when
compared with surrounding tissues; evolutionary
changes in ICH characteristics can be documented
on serial scans. Complications of ICH such as intra-
ventricular extension, hydrocephalus, and increased
ICP can also be demonstrated. Limited data suggest
that for ICH, TCCS has excellent sensitivity, speci-
ficity, positive predictive value, and negative predic-
tive value in patients with adequate transtemporal
windows.149

(Contrast-enhanced) TCCS is probably useful in
the evaluation and monitoring of patients with aneu-
rysmal SAH or intracranial ICA/MCA VSP following
SAH (Type B, Class II to III evidence). Data are
presently insufficient regarding the use of TCCS to
replace CT for diagnosis of ICH (Type U).

Other indications. There are insufficient data to
support the routine clinical use of TCD/TCCS for
other indications including migraine, cerebral ve-
nous thrombosis, monitoring during cerebral angiog-
raphy, evaluation of arteriovenous malformations,
and evaluation of cerebral autoregulation in other
settings (Type U recommendation). For discussion of
these and other possible indications for the use of
TCD, the interested reader is referred to other
sources.1

Summary and conclusions

1. Settings in which TCD is able to provide informa-
tion and in which its clinical utility is established.
a. Screening of children aged 2 to 16 years with

sickle cell disease for assessing stroke risk
(Type A, Class I), although the optimal fre-
quency of testing is unknown (Type U).

b. Detection and monitoring of angiographic VSP
sSAH (Type A, Class I-II). More data are
needed to show if its use affects clinical out-
comes (Type U).

2. Settings in which TCD is able to provide informa-
tion, but in which its clinical utility, compared
with other diagnostic tools, remains to be
determined.
a. Intracranial steno-occlusive disease. TCD is

probably useful (Type B, Class II to III) for the
evaluation of occlusive lesions of intracranial
arteries in the basal cisterns (especially the
ICA siphon and MCA). The relative value of
TCD compared with MRA or CTA remains to
be determined (Type U). Data are insufficient
to recommend replacement of conventional an-
giography with TCD (Type U).

b. Cerebral circulatory arrest (adjunctive test in
the determination of brain death). If needed,
TCD can be used as a confirmatory test, in

support of a clinical diagnosis of brain death
(Type A, Class II).

3. Settings in which TCD is able to provide informa-
tion, but in which its clinical utility remains to be
determined.
a. Cerebral thrombolysis. TCD is probably useful

for monitoring thrombolysis of acute MCA oc-
clusions (Type B, Class II to III). More data are
needed to assess the frequency of monitoring
for clot dissolution and enhanced recanaliza-
tion and to influence therapy (Type U).

b. Cerebral microembolism detection. TCD moni-
toring is probably useful for the detection of
cerebral microembolic signals in a variety of
cardiovascular/cerebrovascular disorders/pro-
cedures (Type B, Class II to IV). Data do not
support the use of this TCD technique for diag-
nosis or monitoring response to antithrombotic
therapy in ischemic cerebrovascular disease
(Type U).

c. CEA. TCD monitoring is probably useful to de-
tect hemodynamic and embolic events that
may result in perioperative stroke during and
after CEA in settings where monitoring is felt
to be necessary (Type B, Class II to III).

d. CABG surgery. TCD monitoring is probably
useful (Type B, Class II to III) during CABG
for detection of cerebral microemboli. TCD is
possibly useful to document changes in flow
velocities and CO2 reactivity during CABG sur-
gery (Type C, Class III). Data are insufficient
regarding the clinical impact of this informa-
tion (Type U).

e. VMR testing. TCD is probably useful (Type B,
Class II to III) for the detection of impaired
cerebral hemodynamics in patients with severe
(�70%) asymptomatic extracranial ICA steno-
sis, symptomatic or asymptomatic extracranial
ICA occlusion, and cerebral small-artery dis-
ease. Whether these techniques should be used
to influence therapy and improve patient out-
comes remains to be determined (Type U).

f. VSP after tSAH. TCD is probably useful for the
detection of VSP following tSAH (Type B, Class
III), but data are needed to show its accuracy
and clinical impact in this setting (Type U).

g. TCCS. TCCS is possibly useful (Type C, Class
III) for the evaluation and monitoring of space-
occupying ischemic MCA infarctions. More
data are needed to show if it has value vs CT
and MRI scanning and if its use affects clinical
outcomes (Type U).

4. Settings in which TCD is able to provide informa-
tion, but in which other diagnostic tests are typi-
cally preferable.
a. Right-to-left cardiac shunts. Whereas TCD is

useful for detection of right-to-left cardiac and
extracardiac shunts (Type A, Class II), TEE is
superior, as it can provide direct information
regarding the anatomic site and nature of the
shunt.
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b. Extracranial ICA stenosis. TCD is possibly
useful for the evaluation of severe extracranial
ICA stenosis or occlusion (Type C, Class II to
III), but, in general, carotid duplex and MRA
are the diagnostic tests of choice.

c. Contrast-enhanced TCCS. (Contrast-enhanced)
TCCS may provide information in patients with
ischemic cerebrovascular disease and aneurys-
mal SAH (Type B, Class II to IV). Its clinical
utility vs CT scanning, conventional angiogra-
phy, or nonimaging TCD is unclear (Type U).

Recommendations for future research

1. Ischemic cerebrovascular disease.
a. Sickle cell disease. The optimal frequency for

screening children between the ages of 2 and
16 years needs to be determined. Data are
needed to assess the value of TCD in the eval-
uation of adults with sickle cell disease and its
impact, if any, on selection of treatment and
prognosis.

b. Intracranial steno-occlusive disease. More data
are needed to define the ability of TCD to detect
�50% stenosis of major basal intracranial arter-
ies vs MRA and CTA. Once MRA and CTA are
validated, the relative value of each technique for
specific vascular lesions that may influence pa-
tient management must be determined. The abil-
ity of TCD to predict outcome in vertebrobasilar
distribution stroke, if any, requires study. The
value of TCD in the prediction of hemorrhagic
transformation of ischemic infarction needs con-
firmation in well-designed studies of patients
who do and do not receive anticoagulation or
thrombolysis.

c. Extracranial ICA stenosis. The clinical utility of
TCD’s ability to detect impaired cerebral hemo-
dynamics distal to high-grade extracranial ICA
stenosis or occlusion and assist with stroke risk
assessment needs confirmation and evaluation in
randomized clinical trials. In patients with symp-
tomatic ICA occlusion, it would be useful to di-
rectly compare TCD/VMR testing with PET to
see if TCD would be valuable to select and seri-
ally monitor patients for extracranial-to-
intracranial bypass surgery. In patients with
asymptomatic high-grade ICA stenosis, it would
be useful to learn if TCD assessment of VMR or
microembolic signal detection can improve selec-
tion of patients for CEA or angioplasty.

2. Perioperative and periprocedural monitoring.
a. Cerebral microembolization. The ability of

TCD to better distinguish between the various
types of microembolic signals needs to be en-
hanced. Clinical utility in specific disease
states should be defined.

b. CEA. The incremental value of TCD monitor-
ing compared with other intraoperative moni-

toring procedures (EEG, evoked potentials,
stump pressures, cerebral blood flow) needs
further study.

c. CABG surgery. More data are needed to show
if TCD predicts the occurrence of stroke or neu-
rocognitive impairment following CABG or is
useful as a biomarker or surrogate endpoint for
clinical trials of neuroprotective agents or new
surgical techniques.

d. Cerebral thrombolysis. The value of TCD in mon-
itoring thrombolytic therapy (IV and intra-
arterial) and other recanalizing techniques needs
to be shown in clinical trials. Data from such
studies might help in determining the need for
further interventions and predicting the outcome
of treated and nontreated patients. In addition,
studies should be done to determine if thrombol-
ysis can be enhanced with specific frequency(ies)
of transcranial ultrasound.

3. Monitoring in the neurology/neurosurgery inten-
sive care unit.
a. SSAH. More data are needed on the sensitivity

and specificity of TCD in the detection of angio-
graphic VSP in different age groups, as diagnos-
tic criteria (like normative data) may vary with
age. It remains to be shown how use of TCD
affects clinical outcomes. The ability of specific
TCD measurements to predict long-term out-
come from SAH requires study.

b. TSAH. Data on the sensitivity and specificity
of TCD for detection of angiographic VSP in
this setting are needed. More data are needed
to show the clinical utility and predictive
power of TCD.

c. Contrast-enhanced TCCS. The incremental
value of (contrast-enhanced) TCCS in diverse
settings of ischemic and hemorrhagic cerebro-
vascular disease, in comparison with TCD, CT,
CTA, MRI, MRA, and conventional angiogra-
phy, needs to be confirmed. Whether (contrast-
enhanced) TCCS can assist stroke and neuro–
intensive care unit clinicians in the monitoring
of reperfusion techniques or selection of pa-
tients with severe MCA territory infarction for
clinical trials of aggressive, putative beneficial,
or life-saving therapies remains to be
determined.

Disclaimer This statement is provided as an ed-
ucational service of the American Academy of Neu-
rology. It is based on an assessment of current
scientific and clinical information. It is not intended
to include all possible proper methods of care for a
particular neurology problem or all legitimate crite-
ria for choosing to use a specific procedure. Neither
is it intended to exclude any reasonable alternative
methodologies. The AAN recognizes that specific
care decisions are the prerogative of the patient and
the physician caring for the patient, based on all of
the circumstances involved.
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Appendix 1
The Therapeutic and Technology Assessment Subcommittee members

are Douglas S. Goodin, MD (chair); Yuen T. So, MD, PhD (vice-chair);
Carmel Armon, MD, MHS; Richard M. Dubinsky, MD; Mark Hallett, MD;
David Hammond, MD; Chung Y. Hsu, MD, PhD; Andres M. Kanner, MD;
David Lefkowitz, MD; Janis Miyasaki, MD; Michael A. Sloan, MD, MS; and
James C. Stevens, MD.

Appendix 2
Additional material related to this article can be found on the AAN web

site. Visit www.aan.com/professionals/practice/index.cfm to view the entire
guideline.
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